
Journal of Science & Technology
By The Science Brigade (Publishing) Group 66

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Security Challenges and Solutions in Kubernetes Container

Orchestration

By Oluebube Princess Egbuna

Devrel Engineer, Spectro Cloud, California, United States

ABSTRACT

This study aims to uncover vulnerabilities, provide practical mitigation measures, and

highlight policy implications by examining the security issues and solutions associated with

Kubernetes container orchestration. The key aims include investigating vulnerabilities in

Kubernetes components, reviewing network security risks, evaluating container runtime

vulnerabilities, and studying risks related to third-party integrations. This research is based

on a thorough analysis of case studies and existing literature, emphasizing new threats and

security vulnerabilities in Kubernetes deployments. Important discoveries point to runtime

vulnerabilities in container environments, network security holes caused by

misconfigurations, and significant vulnerabilities in Kubernetes control plane components.

The policy implications highlight the necessity of improving Kubernetes's security procedures

through industry standards, regulatory frameworks, and ongoing training. Organizations

may better safeguard Kubernetes deployments against changing threats by implementing

robust authentication procedures, network policies, and runtime protection measures. With

its findings and suggestions for enabling safe container orchestration in contemporary IT

infrastructures, this study adds to the current conversation around Kubernetes security.

Keywords: Kubernetes, Container Orchestration, Security Challenges, Security Solutions,

Container Security, Kubernetes Security, Threat Mitigation, Network Security, Runtime

Security, Best Practices

INTRODUCTION

The deployment, management, and scalability of applications have been entirely transformed

by Kubernetes, which has become the de facto standard for container orchestration in recent

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 67

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

years. Its versatility and extensive feature set have made it a cornerstone technology in the

shift towards microservices architectures and cloud-native computing. To guarantee the

integrity, availability, and confidentiality of apps and data, a new set of security issues are

brought about by the widespread deployment of Kubernetes, as is the case with any potent

technology.

Kubernetes, an open-source technology originally built by Google, automates containerized

applications' deployment, scaling, and management. Using containers rather than traditional

virtual machines improves resource efficiency, speeds up startup times, and increases

portability. Containers combine an application and its dependencies into a single, lightweight

executable. Across a cluster of servers, Kubernetes orchestrates these containers and offers

features like load balancing, automated rollouts and rollbacks, and self-healing capabilities.

Notwithstanding these benefits, Kubernetes environments' distributed and dynamic

architecture poses serious security risks. The challenges of maintaining numerous containers,

each with unique runtime, networking, and storage requirements, create a broad attack

surface that malevolent actors can abuse. Furthermore, Kubernetes' inherent capabilities—

such as its etcd datastore, API server, and controllers—may be targeted if improperly secured.

The safety of the cluster's control plane components is one of the leading security issues with

Kubernetes. The central administration server, or API server, is especially susceptible to

assaults, including denial of service, unauthorized access, and API abuse. Strong

authentication, authorization, and encryption procedures are essential to protect this

component. Additionally, etcd, the distributed key-value store that holds the cluster's state

must be secured to prevent data breaches and assure data integrity.

Another crucial area of concern is network security. The intricate overlay of virtual networks

in Kubernetes' networking approach exposes numerous possible vulnerabilities. Ensuring

secure communication between containers, defending against network-based attacks, and

monitoring network policies are vital jobs. Implementing network segmentation, employing

service meshes, and exploiting Kubernetes' native network policy features might assist in

avoiding these concerns.

The security of the container runtime environment also deserves attention. Containers share

the host operating system’s kernel, making kernel attacks particularly risky. Keeping the host

operating system and container runtimes up to date with the latest security patches, applying

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 68

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

runtime security tools, and adhering to the principle of least privilege can lessen the risk of

compromise.

Developing third-party integrations and extensions in Kubernetes settings also brings further

security problems. Ensuring the security of third-party plugins, certifying container images,

and controlling supply chain security are all critical aspects of maintaining a safe Kubernetes

operation.

This journal paper seeks to provide a complete review of the security challenges connected

with Kubernetes container orchestration and propose practical ways to overcome these

challenges. By studying a Kubernetes cluster's many components and layers, we will highlight

best practices and offer tools and strategies for protecting Kubernetes installations. The goal

is to provide practitioners with the knowledge and tools to design and manage secure,

resilient Kubernetes environments, ultimately generating greater trust and confidence in this

breakthrough technology.

The following sections will explore specific security concerns and solutions, covering topics

such as safeguarding the control plane, protecting network communications, assuring

runtime security, and managing third-party integrations. By combining theoretical insights

with practical help, we want to provide a valuable resource for Kubernetes administrators,

security professionals, and developers.

STATEMENT OF THE PROBLEM

Organizations using Kubernetes for container orchestration face several security issues that

must be resolved to safeguard their data and applications. Although solid and adaptable,

Kubernetes brings weaknesses and complications not seen in conventional monolithic

designs. This study attempts to close the gap created by the quick adoption of Kubernetes

over the creation of thorough security procedures.

Kubernetes's dynamic nature produces a vast and intricate attack surface, allowing it to scale

applications up and down and manage various containers across several nodes. The same

capabilities that draw developers and operators to Kubernetes, like automated deployments,

self-healing, and seamless scaling, introduce potential security flaws. Attackers can use these

flaws to obtain unauthorized access, interfere with services, or steal confidential information.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 69

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

One of the main issues is securing the Kubernetes control plane, which consists of the

controllers, etc., and the API server. Being the cluster's central management point, the API

server is incredibly open to attacks if it is not adequately secured. Similar to this, etcd—which

houses all cluster data—is a crucial part that might be attacked. Vital permission, encryption,

and authentication are essential for these components but are frequently disregarded in favor

of operational effectiveness.

Another significant area for improvement in Kubernetes clusters is network security. Because

of the intricate overlay of virtual networks in Kubernetes' networking topology,

communication between containers is challenging to secure and monitor. Attackers can use

network vulnerabilities to move laterally within the cluster, intercept confidential

information, or interfere with services. Even while network policy tools and service meshes

are readily available, many organizations need help to apply them properly because they need

more resources or experience.

Specific security vulnerabilities are associated with the container runtime environment.

Because containers share the kernel of the host operating system, any vulnerability at the

kernel level could impact all containers executing on that host. Moreover, hazards may be

introduced by using old or weak container images. Although runtime security tools and

ensuring containers operate with the fewest privileges possible might help reduce these risks,

these practices are still not widely used.

The expanding community of Kubernetes extensions and integrations from outside parties

also adds complexity to the security picture. While adding functionality, third-party plugins

may bring vulnerabilities if they are not thoroughly examined and secured. Other important

issues that need to be addressed include the security of the software supply chain and the

integrity of container images.

By offering a thorough examination of the security issues related to Kubernetes container

orchestration and suggesting workable solutions, this paper seeks to close these gaps. The

study aims to determine the most critical security vulnerabilities in Kubernetes settings, assess

the security tools and procedures that are currently in place, and provide best practices for

securing Kubernetes deployments. The study hopes to further the creation of a more secure

Kubernetes ecosystem in this way.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 70

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

This study is critical because it can improve the security posture of Kubernetes-using

enterprises. By identifying frequent issues and providing practical recommendations, the

study may help practitioners enhance the resilience and security of their Kubernetes settings.

Thus, more people may trust Kubernetes as a dependable platform for launching and

maintaining containerized apps, which may encourage wider use of cloud-native

technologies.

The project's goal is to close the gap between Kubernetes's quick uptake and the creation of

efficient security procedures. By offering a thorough analysis of security issues and solutions,

the study aims to give Kubernetes administrators, security experts, and developers the

information and resources they need to safeguard their environments and guarantee the

secure running of their applications.

METHODOLOGY OF THE STUDY

This paper uses a secondary data-based evaluation technique to examine the security issues

and solutions in Kubernetes container orchestration. It thoroughly examines existing research

literature, encompassing scholarly articles, industry reports, technical documentation, and

best practice standards. Combining results from reliable sources, the paper attempts to

identify prevalent security challenges, assess existing solutions, and suggest best practices for

protecting Kubernetes systems. Implementing a comprehensive review approach guarantees

a deep comprehension of Kubernetes' security landscape and expedites the development of

practical recommendations for practitioners.

SECURING THE KUBERNETES CONTROL PLANE COMPONENTS

The central administration layer that coordinates all cluster operations is the control plane in

a Kubernetes system. It consists of essential parts such as the controller manager, scheduler,

etc., and API server. The security of these control plane components must be guaranteed for

the Kubernetes environment to be reliable and secure overall. This chapter examines the

security concerns connected to each element control plane component and offers ways to

reduce them.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 71

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Figure 1: Key Strategies for Securing Kubernetes Control Plane Components

API Server Security

The API server serves as the primary management interface for Kubernetes clusters, handling

all administrative tasks. Because of its crucial function, it is a prime target for attacks. Strong

authentication and permission procedures must be in place for the API server to be secure.

Role-based access control, or RBAC, is crucial to guarantee that only authorized users and

services may carry out particular tasks within the cluster. In addition, it is essential to activate

Transport Layer Security (TLS) encryption for all communications between API servers to

guard against man-in-the-middle attacks and guarantee data integrity (Theodoropoulos et al.,

2023).

Another essential step is implementing thorough audit tracking. Administrators can monitor

questionable activities by keeping detailed records of every API server request and react

quickly to possible security breaches. Regularly checking and analyzing these logs might help

identify patterns that suggest malicious conduct.

Securing etcd

Etcd is a susceptible component that serves as the cluster's key-value store. Unauthorized

access to Etcd may manipulate the cluster state, and serious data breaches may arise.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 72

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Therefore, it is essential to implement strict authentication and authorization procedures to

safeguard Etcd. According to Rahaman et al. (2023), the Etcd cluster can only be accessed by

trusted entities due to using client certificates for authentication.

Another essential procedure is to encrypt data both in transit and at rest. To prevent

unauthorized users from reading critical information straight from storage, ECTD enables

encryption for data saved on disk. Additionally, employing TLS to encrypt communication

between etcd nodes and clients safeguards against eavesdropping and tampering.

Regular data backups are crucial for disaster recovery. These backups should be routinely

tested and kept securely to ensure successful data loss or corruption restoration.

Controller Manager Security

The controller manager performs numerous background operations in Kubernetes, like

replication control and node management. To minimize potential harm in the event of a

compromise, it is essential to secure the controller manager by making sure it runs with the

fewest privileges possible.

It's also crucial to ensure that the controller manager's credentials and configuration files are

handled and kept safely. Using secrets management technologies and encrypting sensitive

information helps prevent unauthorized access and limit the danger of credential disclosure.

Scheduler Security

Based on policy and resource constraints, the scheduler must place containers on the proper

nodes. While the scheduler does not usually handle sensitive data, securing its configuration

and communication channels is crucial to prevent disruption of cluster operations. Limiting

and monitoring the scheduler's access to the API server can avoid unauthorized modifications

to pod placements.

Implementing Network Policies

Kubernetes employs network policies to regulate traffic flow between pods and services,

fortifying the control plane's security. By implementing stringent network restrictions,

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 73

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

administrators can limit the communication pathways to and from control plane components,

decreasing the attack surface (Sadiq et al., 2023).

Protecting the Kubernetes control plane is crucial for ensuring the integrity and stability of

the entire cluster. Implementing effective authentication and authorization systems,

encrypting data in transit and at rest, and adhering to the principle of least privilege can

decrease the risk of attacks on control plane components. Frequent activity tracking,

monitoring, and reviewing improve security even further by facilitating quick identification

and mitigation of possible threats.

NETWORK SECURITY IN KUBERNETES CLUSTERS

In Kubernetes clusters, network security is essential to preserving the environment's general

security posture. Due to its intricate virtual network overlay, Kubernetes' networking model

presents particular difficulties and security holes. The main network security issues with

Kubernetes clusters are examined in this chapter, along with risk-reduction techniques.

Table 1: Comparison of Network Policies in Kubernetes

Feature Calico Cilium Weave Kube-router

Policy Model Kubernetes

NetworkPolicy,

Calico-specific

extensions

Kubernetes

NetworkPolicy,

Cilium-specific

extensions

Kubernetes

NetworkPolicy

Kubernetes

NetworkPolicy

Data Plane Linux iptables,

eBPF

eBPF Linux iptables Linux iptables

Performance

Impact

Moderate Low (eBPF) Moderate Moderate

Support for

Encryption

Yes (IPsec) Yes No No

Integration

with Service

Mesh

Yes Yes Limited No

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 74

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Understanding Kubernetes Networking

With Kubernetes, communication between containers is facilitated by a single networking

model that encapsulates the underlying network architecture. Every pod is assigned a unique

IP address in a Kubernetes cluster, facilitating smooth communication. This implies, however,

that a single network compromise may impact several pods and services (Donca et al., 2024).

Securing Pod-to-Pod Communication

Pod-to-pod communication control is one of the core components of Kubernetes network

security. By default, attackers can move laterally within the cluster by taking advantage of the

unrestricted communication between all pods in Kubernetes. Establishing and implementing

guidelines controlling the permitted communication pathways between pods requires

network policies (Augustyn et al., 2024).

Administrators can use network policies to designate which pods can communicate with one

another and under what circumstances. Implementing the concept of least privilege decreases

the possible attack surface by limiting the number of allowed communication paths. For

instance, database pods can be configured only to accept connections from particular

application pods to block unwanted access.

Encrypting Network Traffic

Network communication must be encrypted to prevent data eavesdropping and

manipulation in transit. Kubernetes facilitates encryption using multiple protocols, such as

IPsec for inter-node encryption and TLS for protecting API server connections. Additional

encryption capabilities can be obtained using service meshes, such as Istio, which

automatically encrypt all service-to-service communication within the cluster.

Additional security capabilities provided by service meshes include mutual TLS (mTLS),

which guarantees the authentication of both parties involved in a communication. This further

improves security by preventing unauthorized parties from communicating in the network

(Esmaeily & Kralevska, 2024).

Implementing Ingress and Egress Controls

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 75

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Controlling traffic flow into and out of the Kubernetes cluster requires implementing egress

and ingress rules. While egress controls outward traffic from the cluster to external networks,

ingress controllers handle external access to services within the cluster, usually via

HTTP/HTTPS.

To secure the ingress controller, it must be configured only to permit valid traffic. Web

application firewalls (WAFs) are then used to defend against frequent web-based threats such

as cross-site scripting (XSS) and SQL injection. Similarly, egress control implementation

prevents compromised pods from data exfiltration and harmful external server

communication.

Monitoring and Logging Network Activity

Real-time detection and response to security incidents depend on ongoing network activity

monitoring and logging. When used with monitoring programs like Prometheus and Grafana,

tools like Kubernetes Network Policy logging can offer insight into network traffic patterns

and possible abnormalities (Combe et al., 2016).

The cluster might be equipped with network intrusion detection systems (NIDS) to monitor

for any indications of hostile behavior. These programs scan network data for odd trends and

might warn administrators about possible dangers. Detecting and responding to network

security problems can be further improved by routinely analyzing network logs and

integrating them with security information and event management (SIEM) systems.

Protecting the integrity and confidentiality of apps and data within Kubernetes clusters

requires securing network communications. Administrators can lessen many of the dangers

associated with Kubernetes networking by implementing Network Policies, encrypting

communication, controlling ingress and egress, and monitoring network activities. When

paired with a proactive security posture, these steps can significantly improve the security of

Kubernetes settings.

ENSURING RUNTIME SECURITY FOR CONTAINERS

Applications' availability, confidentiality, and integrity depend on runtime security for

containers in Kubernetes. Because containers share the host operating system's kernel, any

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 76

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

vulnerability in the runtime environment can seriously threaten the cluster. This chapter

covers the main issues surrounding container runtime security and provides solutions to these

problems.

Table 2: Container Runtime Security Monitoring Tools Comparison

Tool/Utility Type Features Integration License

Sysdig Falco Runtime

Security

Real-time threat

detection, anomaly

detection

Kubernetes, Docker,

CI/CD

Open

Source

Aqua Security Runtime

Protection

Vulnerability

scanning, runtime

defense, compliance

Kubernetes, Docker,

AWS, Azure

Commercial

Twistlock Container

Security

Vulnerability

scanning, compliance,

runtime defense

Kubernetes, Docker,

AWS, Azure

Commercial

NeuVector Network

Security

Deep packet

inspection,

vulnerability

management

Kubernetes, Docker,

AWS, Azure

Commercial

Prisma Cloud Cloud-Native

Security

Vulnerability

management, runtime

protection, compliance

Kubernetes, Docker,

AWS, Azure

Commercial

Understanding Container Runtime Security

Applications and their dependencies are contained in lightweight, portable pieces called

containers, which operate as separate processes atop a standard operating system kernel.

Although this architecture has many advantages, such as resource efficiency and consistency

throughout contexts, it also has particular security issues. Protecting the container runtime,

safeguarding the host system, and monitoring container activity to identify and address risks

are all part of ensuring runtime security (Moreno-Vozmediano et al., 2024).

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 77

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Securing the Container Runtime

Container lifecycle management, including starting, stopping, and scaling containers, is the

responsibility of the container runtime, such as Docker or containerd. Using the most recent

versions and applying security updates on time is essential for maintaining the security of the

container runtime. Runtime vulnerabilities can allow malicious code to be executed or obtain

unauthorized access (Zhu et al., 2024).

Container runtime security solutions like gVisor or Kata Containers can improve isolation

between containers by adding an extra layer of security. Compared to conventional container

runtimes, these tools provide more robust isolation by enabling the creation of lightweight

virtual machines that execute containers.

Implementing Least Privilege

Minimizing the possible impact of a hacked container requires applying the principle of least

privilege. Containers should operate with the fewest permissions necessary to accomplish

their intended tasks. Limiting capabilities, turning off privileged mode, and assigning the

proper user and group IDs can all help achieve this. Several security features, including

seccomp profiles, AppArmor, and SELinux, are supported by Docker and Kubernetes to

impose fine-grained access controls (Chin-Wei et al., 2019).

To mitigate the danger of privilege escalation attacks, it is recommended that the `runAsUser`

and `runAsGroup` options be set in Kubernetes pod specifications. This ensures that

containers run as non-root users.

Securing the Host System

The security of the host system that hosts them is just as crucial as the containers themselves.

Ensuring that the host operating system receives frequent updates and patches is imperative.

Hardened kernels and strict access controls further defend the host against attacks coming

from compromised containers.

Early detection of possible threats can be facilitated by observing odd behavior in the host

system, such as unexpected process executions or network connections. System events can be

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 78

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

tracked and logged using tools like Auditd and Falco, which give insight into the host's

security posture (Combe et al., 2016).

Monitoring and Logging Container Activities

It is essential to continuously monitor and log container actions to identify security incidents

and take immediate action in response. Kubernetes can be combined with tools such as

Prometheus, Grafana, Elasticsearch, Fluentd, and Kibana (EFK) stack to gather, store, and

display metrics and logs from containers.

Runtime security tools like Sysdig Secure and Aqua Security provide advanced capabilities

for monitoring container activity. These tools may identify possible attacks, policy violations,

and aberrant behavior. These solutions can also notify administrators of security events and

take automatic action to lessen their effects (Truyen et al., 2019).

Vulnerability Management and Image Scanning

It is essential to check container images for vulnerabilities before deployment routinely. Image

scanning tools such as Clair, Trivy, and Anchore can detect known vulnerabilities in container

pictures and offer suggestions for their resolution. Ensure the production environment only

uses authenticated and trusted images to decrease the attack surface significantly.

Besides pre-deployment screening, looking for fresh vulnerabilities in current-use containers

is critical. Finding and fixing vulnerabilities can be automated by integrating continuous

integration/continuous deployment (CI/CD) pipelines with vulnerability management

technologies (Yang et al., 2024).

Ensuring runtime security for containers in Kubernetes is critical for creating a secure and

robust environment. Administrators can reduce many dangers associated with containerized

applications by safeguarding the container runtime, enforcing the least privilege, protecting

the host system, and monitoring container activity. Regular vulnerability management and

image scanning further increase security by ensuring that only trusted and secure images are

distributed. These measures and a proactive security posture are critical for safeguarding

Kubernetes clusters.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 79

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

MANAGING THIRD-PARTY INTEGRATIONS AND EXTENSIONS

One of Kubernetes' best features is its extensibility, which allows for integrating different

third-party tools and extensions to improve its usefulness. However, these interconnections

also present new security concerns that need to be adequately controlled to safeguard the

overall security of the Kubernetes system. This chapter examines the security issues raised by

extensions and integrations from third parties and offers solutions to reduce the risks.

Figure 2: Distribution of Different Categories of Third-Party Tools

Understanding Third-Party Integrations

Storage options, CI/CD pipelines, and monitoring and logging tools are just a few examples

of third-party connections in Kubernetes. These integrations are possible entry points for

security breaches since they frequently need access to the Kubernetes API and other essential

components. To reduce such risks, assessing each integration's security consequences and

implementing the necessary controls is crucial.

Evaluating and Selecting Third-Party Tools

It is essential to carry out a comprehensive security audit before integrating any third-party

tool. This evaluation should examine the tool's security aspects, such as its encryption

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 80

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

standards, authentication and authorization methods, and adherence to best practices.

Furthermore, studying the tool's history of vulnerabilities and the vendor's responsiveness to

security issues might show its reliability.

One should assess open-source tools based on how well-maintained and supported the

community is. Tools with vibrant communities and regular updates are generally more secure

since vulnerabilities are found and fixed faster. Examining third-party audits and security

certifications for commercial products might offer more assurance.

Implementing Least Privilege

When integrating third-party solutions, it is imperative to implement the concept of least

privilege. Only the minimal permissions required for any tool to carry out its duties should

be allowed. Fine-grained access controls that limit third-party tools to particular namespaces,

resources, or actions can be established using Kubernetes' Role-Based Access Control (RBAC)

feature.

For example, a monitoring tool shouldn't have write access to any resources if its only

requirement is to read metrics from the cluster. Permission restrictions lessen the effect of a

compromised third-party tool and lower the environmental risk.

Securing API Access

The Kubernetes API server is an essential control plane feature with which many third-party

integrations communicate. Robust authentication techniques, like client certificates or OAuth

tokens, are used in API security to guarantee that only authorized tools can communicate with

the API server (Cuadra et al., 2023).

Turning on audit logging for the API server makes tracking and monitoring the actions of

third-party tools easier. Administrators can identify odd or unauthorized actions by routinely

checking audit logs and quickly address security incidents.

Monitoring and Logging

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 81

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Logging and monitoring must be ongoing to maintain the security of third-party integrations.

Logs from third-party tools can be gathered and analyzed using programs like Prometheus,

Grafana, and the Elasticsearch, Fluentd, and Kibana (EFK) stack, which gives insight into the

tools' functionality and behavior.

Installing anomaly detection and notification systems might help spot questionable activity

pointing to a security breach. For instance, a third-party tool may raise an alarm for additional

research if it starts to access resources outside of its normal scope of use.

Regular Security Audits and Updates

Regular security checks are essential to keeping third-party integrations intact. These audits

should examine third-party tool configurations and permissions to ensure they follow other

security best practices, such as the least privilege principle.

Keeping third-party tools updated with the most recent security fixes is also crucial. As more

vulnerabilities are found and fixed over time, frequent updates can help defend the

Kubernetes environment against known dangers (Costa et al., 2023).

Keeping an eye on security while managing third-party extensions and integrations in

Kubernetes calls for proactive security measures. Administrators can lessen the risks

connected with these integrations by carrying out in-depth reviews, putting the least privilege

into practice, securing API access, and routinely monitoring and auditing third-party

technologies. Following these guidelines ensures that external solutions improve Kubernetes'

usefulness without jeopardizing its security.

BEST PRACTICES FOR KUBERNETES SECURITY MANAGEMENT

With its powerful features for delivering and managing containerized apps, Kubernetes has

emerged as the de facto standard for container orchestration. However, its extension and

intricacy can present several security issues. Kubernetes security management best practices

must be followed to protect apps and data. This chapter covers the main tactics and

procedures for improving Kubernetes environment security.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 82

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Figure 3: Implementation Rate of Best Practices in Kubernetes Security

Implement Role-Based Access Control (RBAC)

One essential security component in Kubernetes that aids in managing user rights is Role-

Based Access Control (RBAC). RBAC ensures only authorized users can carry out particular

tasks within the cluster by defining roles and assigning them to individuals or groups. It is

necessary to:

• Define Least-Privilege Roles: Assign users to roles with the fewest permissions

required to carry out their activities. Avoid jobs that are too liberal, such as cluster admin

(Ullah et al., 2023).

• Review and Update Roles Regularly: Audit and update roles regularly to account for

changes in team responsibilities and remove outdated permissions.

Secure the Kubernetes API Server

The fundamental control plane element that makes the Kubernetes API accessible is the API

server. It is essential to secure the API server to stop unwanted access. Necessary actions

consist of:

• Enable Authentication and Authorization: Use RBAC for authorization and robust

authentication methods such as client certificates or OAuth tokens (Senjab et al., 2023).

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 83

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

• Use TLS for Encryption: Encrypt all correspondence with the API server to safeguard

data in transit.

• Enable Audit Logging: Set up audit logs to track and document every request made to

the API server. This will help identify any unusual activity.

Network Policies and Isolation

Kubernetes network policies specify how pods talk to other pods and external network

endpoints. Network policy implementation aids in task isolation and the restriction of

pointless communication paths:

• Define Network Policies: Use network policies based on namespaces, labels, and ports

to regulate traffic flow across pods. For instance, limit database pods to only allow traffic

from designated application pods.

• Isolate Sensitive Workloads: To stop attackers from moving laterally, execute sensitive

workloads in distinct namespaces with stronger network regulations.

Regularly Scan and Update Container Images

Kubernetes apps are built on top of container images. It is crucial to guarantee the security of

these images:

• Scan Images for Vulnerabilities: Before deployment, utilize programs such as Clair,

Trivy, or Anchore to check for known picture vulnerabilities (Cilic et al., 2023).

• Use Trusted Base Images: To incorporate the most recent security fixes, start with

minimal, trusted base images and update them frequently.

• Implement Image Signing: Before deployment, confirm the validity and integrity of

images using image signing techniques (Naweiluo et al., 2021).

Implement Pod Security Policies (PSPs)

Pod Security Policies (PSPs) specify requirements that a pod must fulfill to be approved for

inclusion in the cluster. They support the enforcement of container security standards:

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 84

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

• Restrict Privileged Containers: Avoid using privileged containers on hosts with higher

rights.

• Control Host Namespace Access: To lower the chance of privilege escalation, restrict

access to host namespaces such as the network or IPC namespaces.

• Enforce Resource limitations: To counter resource depletion attacks, set resource

limitations for CPU and memory consumption (Silvestri et al., 2024).

Continuous Monitoring and Incident Response

A clearly defined incident response plan and ongoing monitoring are necessary for effective

security management:

• Monitor Cluster Activities: Track the cluster's performance and health and look for

anomalies using technologies like Grafana, Prometheus, and the EFK stack.

• Implement Intrusion Detection Systems: Install host—and network-based intrusion

detection systems (IDS) to monitor for any indications of malicious activity.

• Develop an Incident Response Plan: Create and update an incident response plan

regularly to guarantee a timely and efficient response to security incidents.

Regular Security Audits and Compliance

Regular security audits assist in finding weaknesses and guarantee adherence to security

guidelines:

• Perform Periodic Audits: To detect and reduce security threats, regularly audit the

cluster's configuration, network policies, and access controls.

• Compliance with Standards: Verify that the Kubernetes environment conforms to

industry norms and requirements, including NIST guidelines and CIS benchmarks

(Carrión, 2022).

Maintaining a secure and robust container orchestration environment requires implementing

best practices for Kubernetes security management. Administrators may significantly

improve the security of their Kubernetes deployments by enforcing pod security policies,

enforcing RBAC, safeguarding the API server, setting network policies, scanning and

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 85

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

upgrading images, and regularly monitoring the cluster. Proactive incident response and

routine audits further ensure the cluster's continued protection against emerging threats.

MAJOR FINDINGS

This chapter presents the main conclusions from a thorough examination and study of

security issues and solutions in Kubernetes container orchestration. The study's main goals

were to improve the security posture of Kubernetes deployments by finding weaknesses,

examining current security measures, and suggesting workable alternatives.

Security Challenges

• Vulnerabilities in Kubernetes Components: One of the main conclusions is that

fundamental Kubernetes components, including the API server etc, controller manager,

and scheduler, are vulnerable to exploits such as unauthorized access, denial-of-service

(DoS) attacks, and API flaws. These components are crucial for coordinating

containerized applications.

• Network Security Risks: Network security has become a crucial concern due to the

possibility of hostile actors intercepting or manipulating communications between

Kubernetes nodes and services. Common vulnerabilities include improperly configured

entrance and egress controls, inadequate network policies, and unencrypted traffic.

• Container Runtime Vulnerabilities: The results showed severe issues with container

runtime security. Problems like unpatched container images, privilege escalation, and

unsafe configurations threatened the isolation and integrity of containerized workloads

in Kubernetes clusters.

• Third-Party Integration Risks: The study emphasized the dangers of incorporating

extensions and technologies from outside sources into Kubernetes systems. These

dangers include compatibility problems, weak dependencies, and unsafe APIs that

could jeopardize Kubernetes deployments' overall security posture.

Security Solutions

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 86

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

• Strengthening Kubernetes Control Plane Security: Implementing robust

authentication procedures, Role-Based Access Control (RBAC), Transport Layer

Security (TLS) encryption, and audit logging for Kubernetes control plane components

are examples of practical solutions. These precautions reduce the risks of illegal access

and data breaches.

• Enhancing Network Security: Best practices for addressing network security issues

include implementing network regulations, encrypting communication channels with

TLS, and deploying service meshes like Istio to monitor traffic between Kubernetes

services and enforce stringent access limits.

• Ensuring Runtime Security for Containers: The implementation of runtime protection

technologies like Sysdig and Falco, the use of secure container images, the enforcement

of pod security policies, and ongoing vulnerability scanning were all highlighted as

critical findings. By taking these precautions, the risks posed by unauthorized access

and container runtime vulnerabilities are reduced.

• Managing Third-Party Integrations and Extensions: Organizations should impose

stringent API access rules, conduct comprehensive security assessments, monitor third-

party components for vulnerabilities, and update them regularly to reduce the risks

associated with third-party integrations. Following these procedures will lower the

chance of creating security holes in Kubernetes setups.

The main conclusions highlight the complexity of the security issues with Kubernetes

container orchestration. By implementing best practices and extensive security measures,

organizations may significantly improve the security posture and resilience of their

Kubernetes deployments against dynamic attacks.

LIMITATIONS AND POLICY IMPLICATIONS

Limitations: Even though the study offers thorough insights into security issues and solutions

in Kubernetes container orchestration, there are a few constraints to be aware of. First,

certain conclusions may need to be updated due to Kubernetes and its ecosystem's

rapid evolution. Additionally, the Kubernetes deployment architecture and corporate

norms may impact the success of security solutions. The study mainly draws from case

studies and extant literature, which might only account for some new dangers or

regional differences in security procedures.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 87

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Policy Implications: Organizations and policymakers should consider several significant

findings from this study. Clear industry standards and legal frameworks for

Kubernetes security can encourage the widespread implementation of best practices

in various industries. Additionally, funding ongoing educational and training

initiatives for Kubernetes developers and administrators helps improve the

understanding and application of efficient security measures. Cooperation between

industry players, security researchers, and open-source communities is essential to

create and sustain robust security solutions customized for Kubernetes environments.

CONCLUSION

Investigating security issues and solutions in Kubernetes container orchestration reveals an

environment full of difficulties and chances to improve cybersecurity procedures. This study

examined several aspects of Kubernetes security, including vulnerabilities in the system's

essential components, network security threats, container runtime vulnerabilities, and third-

party integrations. Every one of these domains poses distinct obstacles that want customized

security protocols to reduce hazards efficiently.

Important conclusions emphasized the importance of securing the components of the

Kubernetes control plane using strong authentication, Role-Based Access Control (RBAC),

Transport Layer Security (TLS) encryption, and thorough audit logging. These steps are

essential for preventing data breaches and unauthorized access.

Implementing strict network policies, using service meshes for improved traffic control and

security monitoring, and encrypting communication channels with TLS are all necessary to

address network security threats.

Runtime security for containers has become a significant concern, requiring runtime

protection tools, secure container image processes, and ongoing vulnerability scanning to

identify and address threats quickly.

Managing third-party integrations and extensions necessitates regular upgrades, enforcement

of API access limits, and strict security assessments to prevent vulnerabilities generated by

dependencies.

In summary, even though Kubernetes provides unmatched scalability and flexibility for

container orchestration, protecting its environments is still a constant problem. Organizations

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 88

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

can secure their mission-critical applications and strengthen their Kubernetes deployments

against changing threats by implementing proactive security strategies, following best

practices, and encouraging cooperation between open-source communities and industry

sectors.

REFERENCES

Augustyn, D. R., Wycislik, L., Sojka, M. (2024). Tuning a Kubernetes Horizontal Pod

Autoscaler for Meeting Performance and Load Demands in Cloud Deployments.

Applied Sciences, 14(2), 646. https://doi.org/10.3390/app14020646

Bernstein, D. (2014). Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud

Computing, 1(3), 81-84. https://doi.org/10.1109/MCC.2014.51

Carrión, C. (2022). Kubernetes as a Standard Container Orchestrator - A Bibliometric Analysis.

Journal of Grid Computing, 20(4), 42. https://doi.org/10.1007/s10723-022-09629-8

Chin-Wei, T., Tse-Yung, H., Chia-Wei, T., Ting-Chun, H., Kuo, S-Y. (2019). KubAnomaly:

Anomaly Detection for the Docker Orchestration Platform with Neural Network

Approaches. Engineering Reports, 1(5). https://doi.org/10.1002/eng2.12080

Cilic, I., Krivic, P., Zarko, I. P., Kušek, M. (2023). Performance Evaluation of Container

Orchestration Tools in Edge Computing Environments. Sensors, 23(8), 4008.

https://doi.org/10.3390/s23084008

Combe, T., Martin, A., Di Pietro, R. (2016). To Docker or not to Docker: A Security Perspective.

IEEE Cloud Computing, 3(5), 54-62. https://doi.org/10.1109/MCC.2016.102

Costa, J., Matos, R., Araujo, J., Li, J., Choi, E. (2023). Software Aging Effects on Kubernetes in

Container Orchestration Systems for Digital Twin Cloud Infrastructures of Urban Air

Mobility. Drones, 7(1), 35. https://doi.org/10.3390/drones7010035

Cuadra, J., Hurtado, E., Pérez, F., Casquero, O., Armentia, A. (2023). OpenFog-Compliant

Application-Aware Platform: A Kubernetes Extension. Applied Sciences, 13(14), 8363.

https://doi.org/10.3390/app13148363

Donca, I-C., Stan, O. P., Misaros, M., Stan, A., Miclea, L. (2024). Comprehensive Security for

IoT Devices with Kubernetes and Raspberry Pi Cluster. Electronics, 13(9), 1613.

https://doi.org/10.3390/electronics13091613

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/
https://doi.org/10.3390/app14020646
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1007/s10723-022-09629-8
https://doi.org/10.1002/eng2.12080
https://doi.org/10.3390/s23084008
https://doi.org/10.1109/MCC.2016.102
https://doi.org/10.3390/drones7010035
https://doi.org/10.3390/app13148363
https://doi.org/10.3390/electronics13091613

Journal of Science & Technology
By The Science Brigade (Publishing) Group 89

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Esmaeily, A., Kralevska, K. (2024). Orchestrating Isolated Network Slices in 5G Networks.

Electronics, 13(8), 1548. https://doi.org/10.3390/electronics13081548

Moreno-Vozmediano, R., Montero, R. S., Huedo, E., Llorente, I. M. (2024). Intelligent

Resource Orchestration for 5G Edge Infrastructures. Future Internet, 16(3), 103.

https://doi.org/10.3390/fi16030103

Naweiluo, Z., Yiannis, G., Marcin, P., Li, Z., Zhou, H. (2021). Container Orchestration on HPC

Systems through Kubernetes. Journal of Cloud Computing, 10(1).

https://doi.org/10.1186/s13677-021-00231-z

Rahaman, M. S., Islam, A., Cerny, T., Hutton, S. (2023). Static-Analysis-Based Solutions to

Security Challenges in Cloud-Native Systems: Systematic Mapping Study. Sensors,

23(4), 1755. https://doi.org/10.3390/s23041755

Sadiq, A., Syed, H. J., Ansari, A. A., Ibrahim, A. O., Alohaly, M. (2023). Detection of Denial of

Service Attack in Cloud Based Kubernetes Using eBPF. Applied Sciences, 13(8), 4700.

https://doi.org/10.3390/app13084700

Senjab, K., Abbas, S., Ahmed, N., Khan, A. U. R. (2023). A Survey of Kubernetes Scheduling

Algorithms. Journal of Cloud Computing, 12(1), 87. https://doi.org/10.1186/s13677-

023-00471-1

Silvestri, S., Tricomi, G., Bassolillo, S. R., De Benedictis, R., Ciampi, M. (2024). An Urban

Intelligence Architecture for Heterogeneous Data and Application Integration,

Deployment and Orchestration. Sensors, 24(7),

2376. https://doi.org/10.3390/s24072376

Theodoropoulos, T., Rosa, L., Benzaid, C., Gray, P., Marin, E. (2023). Security in Cloud-Native

Services: A Survey. Journal of Cybersecurity and Privacy, 3(4), 758.

https://doi.org/10.3390/jcp3040034

Truyen, E., Van Landuyt, D., Preuveneers, D., Lagaisse, B., Joosen, W. (2019). A

Comprehensive Feature Comparison Study of Open-Source Container Orchestration

Frameworks. Applied Sciences, 9(5). https://doi.org/10.3390/app9050931

Ullah, A., Kiss, T., Kovács, J., Tusa, F., Deslauriers, J. (2023). Orchestration in the Cloud-to-

Things Compute Continuum: Taxonomy, Survey and Future Directions. Journal of

Cloud Computing, 12(1), 135. https://doi.org/10.1186/s13677-023-00516-5

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/
https://doi.org/10.3390/electronics13081548
https://doi.org/10.3390/fi16030103
https://doi.org/10.1186/s13677-021-00231-z
https://doi.org/10.3390/s23041755
https://doi.org/10.3390/app13084700
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.3390/s24072376
https://doi.org/10.3390/jcp3040034
https://doi.org/10.3390/app9050931
https://doi.org/10.1186/s13677-023-00516-5

Journal of Science & Technology
By The Science Brigade (Publishing) Group 90

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 3 Issue 3 – ISSN 2582-6921
Bi-Monthly Edition | May – June 2022

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Yang, S., Kang, B. B., Nam, J. (2024). Optimus: Association-based Dynamic System Call

Filtering for Container Attack Surface Reduction. Journal of Cloud Computing, 13(1), 71.

https://doi.org/10.1186/s13677-024-00639-3

Zhu, L., Wang, Y., Kong, Y., Hu, Y., Huang, K. (2024). A Containerized Service-Based

Integration Framework for Heterogeneous-Geospatial-Analysis Models. ISPRS

International Journal of Geo-Information; 13(1), 28. https://doi.org/10.3390/ijgi13010028

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/
https://doi.org/10.1186/s13677-024-00639-3
https://doi.org/10.3390/ijgi13010028

