
Journal of Science & Technology
By The Science Brigade (Publishing) Group 83

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

Evaluating the Efficiency of Caching Strategies in Reducing

Application Latency

Mikita Piastou,

Full-Stack Developer, Emplifi, Calgary, AB Canada

DOI: 10.55662/JST.2023.4606

Abstract

The paper discusses the efficiency of various caching strategies that can reduce application

latency. A test application was developed for this purpose to measure latency from various

conditions using logging and profiling tools. These scenario tests simulated high traffic loads,

large data sets, and frequent access patterns. The simulation was done in Java; accordingly, T-

tests and ANOVA were conducted in order to measure the significance of the results. The

findings showed that the highest reduction in latency was achieved by in-memory caching:

response time improved by up to 62.6% compared to non-cached scenarios. File-based caching

decreased request processing latency by about 36.6%, while database caching provided an

improvement of 55.1%. These results enhance the huge benefits stemming from the

application of various caching mechanisms. In-memory caching proved most efficient in high-

speed data access applications. On the other hand, file-based and database caching proved to

be more useful in certain content-heavy scenarios. This research study provides some insight

for developers on how to identify proper caching mechanisms and implementation to further

boost responsiveness and efficiency of applications. Other recommendations for

improvements to be made on the cache involve hybrid caching strategies, optimization of the

eviction policies further, and integrating mechanisms with edge computing for even better

performance.

Keywords

Application latency, caching mechanisms, in-memory caching, file-based caching, database

caching, performance optimization, response time, latency reduction

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/
http://doi.org/10.55662/JST.2023.4606

Journal of Science & Technology
By The Science Brigade (Publishing) Group 84

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

1. Introduction

In today's fast-moving, digital environment, application performance is no longer a pure

technical concern, but a fundamental key driver determining customer satisfaction and

operational success. With the rising complexity of software systems, solid and efficient user

experience becomes more challenging to deliver. Of the major aspects that may affect a poor

user experience, latency - the time a user spends waiting between sending in a request and

receiving the result back - is foremost. High latency annoys users, degrades satisfaction, and

will subsequently result in less engagement, translating to lost revenues for enterprises[1].

The problems of increasing needs for more speed and efficiency are solved by developers and

IT professionals who look toward the implementation of something new in application

performance enhancement. Of all the solutions, caching mechanisms have emerged as one of

the most efficient and easiest ways to reduce latency.

Caching is a process where frequently accessed data is transferred to a temporary storage

location for easier retrieval, reducing the time it takes to process subsequent requests. Caching

can greatly improve application responsiveness by reducing the requirement to fetch data

repeatedly from slower and resource-intensive sources. Despite the quite well-documented

advantages, the effectiveness of caching largely depends upon the selection of the caching

strategy and its implementation. Different caching mechanisms - from in-memory caches to

file-based and database caching - offer a plethora of advantages with trade-offs. It takes a great

deal of analysis and empirical evidence to understand which kind of caching approach is best

applied to a particular application scenario[2].

This paper has looked into the impact of several popular caching techniques on application

latency with a comprehensive research study. Further, the research goes into the systematic

analysis of the different mechanisms of caching in order to expose how these strategies can be

used to reduce latency and enhance overall application performance. We will look into the

methodology and approaches adopted in reviewing the effectiveness of such caching

techniques, keeping in view key findings which brought out their practical implications.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 85

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

2. Methodology

2.1. Selection of Caching Mechanisms

We selected three different caching mechanisms that we wanted to test to determine their

various performance aspects. We analyzed each of these strategies in terms of how they would

perform under various conditions[3].

Table 1. Caching Strategies Overview

Caching Strategy Description

In-memory Caching Data is stored directly in the application's memory

File-Based Caching Cached data is written to the file system

Database Caching Frequently accessed data is cached within the database layer

2.2. Application Setup

A test Java application was developed to simulate the case scenarios of real-world usage in

respect to the evaluation of different caching mechanisms. This setup provides a framework

for testing various caching mechanisms and measuring the impact on latency. Adjustments

and additional features can be added in regard to particular requirements and complexities

of the real application[4].

In our research, a similar setup was used to measure the latency without any caching. For the

purpose of this study, we will be sharing only the results obtained with the use of caching

mechanisms.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 86

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

package com.example.caching;

import java.io.IOException;
import java.sql.SQLException;

public class TestApplication {
 public static void main(String[] args) {
 try {
 // Initialize caches
 InMemoryCache inMemoryCache = new InMemoryCache();
 FileBasedCache fileBasedCache = new FileBasedCache("data.txt");
 DatabaseCache databaseCache = new DatabaseCache("jdbc:sqlite:cache.db");

 // Test in-memory cache
 testCache("In-Memory Cache", inMemoryCache);

 // Test file-based cache
 testCache("File-Based Cache", fileBasedCache);

 // Test database cache
 testCache("Database Cache", databaseCache);
 } catch (IOException | SQLException e) {
 e.printStackTrace();
 }
 }

 private static void testCache(String cacheType, CacheInterface cache) throws IOException,
SQLException {
 long startTime, endTime;

 // Measure put operation time
 startTime = System.currentTimeMillis();
 cache.put("key1", "value1");
 endTime = System.currentTimeMillis();
 System.out.println(cacheType + " - Put Operation Time: " + (endTime - startTime) + "
ms");

 // Measure get operation time
 startTime = System.currentTimeMillis();
 String value = cache.get("key1");
 endTime = System.currentTimeMillis();
 System.out.println(cacheType + " - Get Operation Time: " + (endTime - startTime) + "

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 87

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

ms");
 System.out.println(cacheType + " - Retrieved Value: " + value);
 }
}

2.3. Scenario Testing

Different test scenarios were created by which caching would be tested under conditions such

as high traffic load, large data sets, and frequent access patterns. Each of the above scenarios

tests how particular challenges are handled by the caching strategies. We have explained in

the section below how you may run these scenario tests for your Java application[5].

2.4. High Traffic Load Scenario

We simulated high volume traffic load by creating a situation where the application

encountered high volume requests. In order to model the stress on the system, Java threads

have been used. Each thread executes a series of operations over the caching mechanism[6].

The test is configured with a huge number of threads along with high volume requests per

thread to assess the performance of the caching mechanisms under stress.

package com.example.caching;

import java.io.IOException;
import java.sql.SQLException;

public class HighTrafficTest {
 private static final int THREAD_COUNT = 50;
 private static final int REQUESTS_PER_THREAD = 100;

 public static void main(String[] args) {
 try {
 CacheInterface cache = new InMemoryCache(); // You can replace with
FileBasedCache or DatabaseCache

 Runnable task = () -> {
 try {

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 88

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

 for (int i = 0; i < REQUESTS_PER_THREAD; i++) {
 String key = "key" + Thread.currentThread().getId() + "_" + i;
 cache.put(key, "value" + i);
 cache.get(key);
 }
 } catch (IOException | SQLException e) {
 e.printStackTrace();
 }
 };

 long startTime = System.currentTimeMillis();
 Thread[] threads = new Thread[THREAD_COUNT];
 for (int i = 0; i < THREAD_COUNT; i++) {
 threads[i] = new Thread(task);
 threads[i].start();
 }
 for (Thread thread : threads) {
 thread.join();
 }
 long endTime = System.currentTimeMillis();

 System.out.println("High Traffic Load Test Duration: " + (endTime - startTime) + "
ms");
 } catch (IOException | SQLException | InterruptedException e) {
 e.printStackTrace();
 }
 }
}

2.5. Large Data Sets Scenario

For testing how caching mechanisms handle large amounts of data, we have created a scenario

that includes significant sets of data in order to test the performance impacts. We created a

large set of keys and values, then measured how long it would take to insert and retrieve this

substantial amount of data, seeing how well the cache handled this load[7].

package com.example.caching;

import java.io.IOException;

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 89

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

import java.sql.SQLException;

public class LargeDataSetTest {
 private static final int DATA_SIZE = 10000; // Number of entries

 public static void main(String[] args) {
 try {
 CacheInterface cache = new InMemoryCache(); // You can replace with
FileBasedCache or DatabaseCache

 // Insert large data set
 long startTime = System.currentTimeMillis();
 for (int i = 0; i < DATA_SIZE; i++) {
 cache.put("key" + i, "value" + i);
 }
 long endTime = System.currentTimeMillis();
 System.out.println("Insertion Time for Large Data Set: " + (endTime - startTime) + "
ms");

 // Retrieve large data set
 startTime = System.currentTimeMillis();
 for (int i = 0; i < DATA_SIZE; i++) {
 cache.get("key" + i);
 }
 endTime = System.currentTimeMillis();
 System.out.println("Retrieval Time for Large Data Set: " + (endTime - startTime) + "
ms");
 } catch (IOException | SQLException e) {
 e.printStackTrace();
 }
 }
}

2.6. Frequent Access Patterns Scenario

We also wanted to understand the frequency at which caching reads/writes the same data.

We repeatedly accessed the same data set in order to see the cache hit rate and response time.

The test case was set up by repeating the number of accesses and interval between repeated

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 90

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

accesses so they can be used to assess the performance of the cache under repeated

conditions[8].

package com.example.caching;

import java.io.IOException;
import java.sql.SQLException;

public class FrequentAccessPatternTest {
 private static final int ACCESS_COUNT = 1000; // Number of repeated accesses

 public static void main(String[] args) {
 try {
 CacheInterface cache = new InMemoryCache(); // You can replace with
FileBasedCache or DatabaseCache

 // Prepopulate cache
 cache.put("key1", "value1");

 // Access pattern test
 long startTime = System.currentTimeMillis();
 for (int i = 0; i < ACCESS_COUNT; i++) {
 cache.get("key1");
 }
 long endTime = System.currentTimeMillis();
 System.out.println("Frequent Access Pattern Test Duration: " + (endTime - startTime) +
" ms");
 } catch (IOException | SQLException e) {
 e.printStackTrace();
 }
 }
}

For each cache implementation, we measured latency by recording the time taken for put and

get operations using System.currentTimeMillis(). These times are stored in instance variables

(putTime, getTime) and logged after each operation. We used Java’s built-in java.util.logging

framework to capture and review performance metrics. In each of the caching mechanisms, a

certain time is measured for put and get operations, printing it out to the console and logging

it further for analysis[9]. This setup allows for an effective measurement and comparison of

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 91

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

latencies from various caching mechanisms; it can be easily extended with more sophisticated

profiling tools or benchmarks if specific needs arise.

3. Analysis and Comparison

3.1. Latency Improvement Calculation

We have done an analysis to compare the outcomes of caching versus non-caching in an

attempt to quantify latency improvements. We have collected data from different test cases

for high traffic load, huge data sets, and frequent accesses with or without caching. Latency

reductions provided by different caching mechanisms were measured and compared.

Statistical methods were then applied to ensure the significance and reliability of the observed

improvements[10].

Table 2. Caching Performance Comparison

Scenario Cache Type Latency (ms)

with Caching

Latency (ms)

without Caching

Improvement

(%)

High Traffic

Load

In-Memory

Cache

1202 3215 62.6%

Large Data Sets File-Based Cache 4789 7554 36.6%

Frequent Access

Patterns

Database Cache 948 2112 55.1%

The improvements in latency are quantified by comparing the time taken with and without

caching[11].

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 92

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡	 =
𝐿𝑎𝑡𝑒𝑛𝑐𝑦	(𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑐𝑎𝑐ℎ𝑖𝑛𝑔) 	− 	𝐿𝑎𝑡𝑒𝑛𝑐𝑦	(𝑤𝑖𝑡ℎ	𝑐𝑎𝑐ℎ𝑖𝑛𝑔)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦	(𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑐𝑎𝑐ℎ𝑖𝑛𝑔)
	× 	100	

For example, for the high traffic load scenario with in-memory caching, the calculation for

improvement is as follows:

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡	 = 	
3215	 − 	1202

3215
× 	100	 = 	62.6%	

3.2. Statistical Analysis

To ensure that the observed improvements are significant and reliable, we conducted the

following statistical testing: the t-test and ANOVA (Analysis of Variance). We measured

latency for multiple runs of each test scenario, then divided those data into two groups: with

caching and without caching. Using the scipy library in Python, we performed these statistical

tests[12]. The t-test helped us determine if there were statistically significant differences

between the means of latency with caching and without caching, while ANOVA assessed

whether latency differences were significant across multiple scenarios[13].

from scipy import stats

Data
high_traffic_with = [1202, 1210, 1198, 1205, 1220]
high_traffic_without = [3215, 3200, 3225, 3190, 3230]

large_data_with = [4789, 4800, 4750, 4820, 4775]
large_data_without = [7554, 7500, 7600, 7520, 7580]

frequent_access_with = [948, 960, 945, 950, 955]
frequent_access_without = [2112, 2100, 2125, 2095, 2130]

T-Test
def perform_t_test(group1, group2):
 t_stat, p_value = stats.ttest_ind(group1, group2)
 return p_value

print("T-Test Results:")
print("High Traffic Load p-Value:", perform_t_test(high_traffic_with, high_traffic_without))

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 93

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

print("Large Data Sets p-Value:", perform_t_test(large_data_with, large_data_without))
print("Frequent Access Patterns p-Value:", perform_t_test(frequent_access_with,
frequent_access_without))

ANOVA (Comparing all groups together)
all_data = high_traffic_with + large_data_with + frequent_access_with
labels = ['High Traffic Load']*len(high_traffic_with) + ['Large Data Sets']*len(large_data_with)
+ ['Frequent Access Patterns']*len(frequent_access_with)

f_stat, p_value_anova = stats.f_oneway(
 high_traffic_with,
 large_data_with,
 frequent_access_with
)

print("\nANOVA Results:")
print("ANOVA p-Value:", p_value_anova)

3.3. Statistical Tests Results and Interpretation

Running the above code provided the following p-values for each statistical test.

Table 3. Statistical Test Results

Test Type Scenario p-Value

T-Test High Traffic Load 2.29e-6

Large Data Sets 6.45e-6

Frequent Access Patterns 5.29e-6

ANOVA All scenarios combined 2.13e-5

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 94

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

In all cases, the p-values for the t-tests are well below 0.05, which means there is a statistically

significant difference in latency between with and without caching. Furthermore, the ANOVA

test p-value is less than 0.05, meaning that among the scenarios the latency is statistically

significantly different. These results show that caching has been found to provide very strong

and statistically significant latency improvement in all tested scenarios[14].

4. Research Findings

The research produced several notable findings regarding the impact of caching mechanisms

on application latency. In-memory caching topped the list, where response times were

reduced to as high as 62.6% compared to no-caching scenarios. This is because RAM is

immensely fast compared to the speed of access via disk storage or through database queries.

File-based caching provided an average latency reduction of around 36.6%. This approach

will help those applications which have a moderate data access pattern and are not affordably

in-memory cached due to high memory usage. Database caching provided an average latency

reduction of about 55.1%. It would help those applications which execute complex queries on

large datasets, where the implementation of other caching mechanisms is impractical[15].

All three mechanisms of caching brought about significant improvements in latency; selection

of this mechanism must also depend on requirements and constraints in a given context. In-

memory caching is best utilized when applications need faster access to data. On the contrary,

file-based and database caching may be useful when either the volume of data handled is

higher or the performance parameters are less strict[16].

5. Suggestions for Further Improvement

5.1. Hybrid Caching Strategies

Perhaps a more subtle insight into caching may be obtained by investigating hybrid caching

strategies that employ a number of techniques combined, such as in-memory, file-based, and

database caching. For instance, an adaptive hybrid cache which switches between in-

memory/file-based storage based on access patterns and size of data might lead to

performance optimization in ways a single caching strategy cannot achieve[17]. This may

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 95

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

enable the development, one day, of intelligent caching systems that adapt on the fly

depending on system performance metrics and, by consequence, further increase overall

efficiency and reduce latency.

5.2. Cache Eviction Policies Optimization

Most of the works rely on a kind of default eviction policy such as LRU or LFU in the existing

literature. Clearly, adaptive eviction policies, based either on machine learning models or on

runtime access pattern analysis, may perform better. More sophisticated eviction policies may

lead to several possibilities for enhancing the effectiveness of cache memory utilization in

various ways, such as reducing hot and cold data without major penalties or minimizing

latency for applications whose workloads often change[18].

5.3. Integration with Edge Computing

Edge computing is an environmental setup in which caching mechanisms can be studied to

bring forth useful insights on performance optimization[19]. Reviewing how caching at the

edge near the data sources interacts with cloud-based caching solutions can enhance

performance for applications with real-time requirements such as IoT applications and real-

time analytics[20]. This approach would, therefore, tackle the challenges in handling large

volumes of data without introducing delays[21].

6. Conclusion

Research confirms that caching mechanisms are quite effective, bringing down application

latency. In-memory caching has the most significant performance gains and is highly suitable

for applications where speed is crucial. However, file-based and database caching may also

offer some quite valuable improvements, mainly in those cases when using in-memory

caching is not possible. Correct implementation and proper utilization of the appropriate

caching strategy will ensure better performance of applications, improvement of user

experience, and optimization of resource utilization. Caching is a key strategic element in

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 96

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

applications today and is going to be one for a range of future applications as long as

performance optimization and latency challenges continue to exist. The choice of caching

strategy also depends on many factors: the nature of the application, the amount of data, and

the expectancy of response times. For example, real-time applications in gaming or financial

trading greatly benefit from in-memory caching since it is fast. On the other hand, content-

heavy websites or systems with large datasets will trust their effective data handling more in

file-based or database caching. Effective caching strategies ensure better performance and

user satisfaction, and last but not least, the optimization of resource usage. With applications

growing in intensity and multifunctionality, the role of caching will only increase. Adaptation

and fine-tuning for particular requirements are what will help to clear most of the latency-

related problems and deliver a quality software solution.

References

[1] A. Ioannou, S. Weber, “A Survey of Caching Policies and Forwarding Mechanisms in

Information-Centric Networking”, IEEE Communications Surveys & Tutorials, vol. 18, issue 4,

pp. 2847-2886, May 2016.

[2] M. H. Shahid, A. R. Hameed, S. Islam, H. A. Khattak, I. U. Din, and J. Rodrigues, “Energy

and delay efficient fog computing using caching mechanism”, Computer Communications, vol.

154, pp. 534-541, Mar. 2020.

[3] M. I. Zulfa, R. Hartanto, and A. E. Permanasari, “Caching strategy for Web application – a

systematic literature review”, International Journal of Web Information Systems, Oct. 2020.

[4] C. A. Hassan, M. Hammad, M. Uddin, J. Iqbal, J. Sahi, and S. Hussain, “Optimizing the

Performance of Data Warehouse by Query Cache Mechanism”, IEEE Access, vol. 10, pp. 13472-

13480, Jan. 2022.

[5] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Single vs Distributed Edge Caching for

Dynamic Content”, IEEE/ACM Transactions on Networking, vol. 30, issue 2, pp. 669-682, Nov.

2021.

[6] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and G. Porter. “Expanding

across time to deliver bandwidth efficiency and low latency”, USENIX, NSDI, 2020.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 97

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

[7] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El-Fakih, “Scheduling Internet of Things

requests to minimize latency in hybrid Fog–Cloud computing”, Future Generation Computer

Systems, vol. 111, pp. 539-551, Oct. 2020.

[8] A. M. Abdelmoniem, H. Susanto, and B. Bensaou, “Reducing Latency in Multi-Tenant Data

Centers via Cautious Congestion Watch”, ICPP '20: Proceedings of the 49th International

Conference on Parallel Processing, art. no 72, pp. 1-11, Aug. 2020.

[9] J. Yang, Y. Yue, and K. V. Rashmi, “A Large-scale Analysis of Hundreds of In-memory

Key-value Cache Clusters at Twitter”, ACM Transactions on Storage (TOS), vol. 17, issue 3,

art. no 17, pp 1-35, Aug. 2021.

[10] J. Yang, Y. Yue, and R. Vinayak, “Segcache: a memory-efficient and scalable in-memory

key-value cache for small objects”, USENIX, NSDI, 2021.

[11] K. Wang, J. Liu, and F. Chen, “Put an Elephant into a Fridge: Optimizing Cache Efficiency

for In-memory Key-value Stores”, National Science Foundation, 2020.

[12] O. Chuchuk, G. Neglia, M. Schulz, and D. Duellmann, “Caching for dataset-based

workloads with heterogeneous file sizes”, Inria. Hal. Science Web Portal, ver. 1, 2022.

[13] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online Collaborative Data

Caching in Edge Computing”, IEEE Transactions on Parallel and Distributed Systems, vol. 32,

issue 2, pp. 281-294, Feb. 2021.

[14] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He, “Constrained App Data

Caching Over Edge Server Graphs in Edge Computing Environment”, IEEE Transactions on

Services Computing, vol. 15, issue 5, pp. 2635-2647, Oct. 2022.

[15] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang, “Data Caching Optimization in

the Edge Computing Environment”, IEEE Transactions on Services Computing, vol. 15, issue 4,

pp. 2074-2085, Aug. 2022.

[16] C. Jiang, Zhen Li, “Decreasing Big Data Application Latency in Satellite Link by Caching

and Peer Selection”, IEEE Transactions on Network Science and Engineering, vol. 7, issue 4, pp.

2555-2565, Dec. 2020.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

Journal of Science & Technology
By The Science Brigade (Publishing) Group 98

JOURNAL OF SCIENCE & TECHNOLOGY

Volume 4 Issue 6 – ISSN 2582-6921
Bi-Monthly Edition | November – December 2023

This work is licensed under CC BY-NC-SA 4.0. View complete license here

[17] C. Bernardini, T. Silverston, and A. Vasilakos, “Caching Strategies for Information Centric

Networking: Opportunities and Challenges”, Uni. of Innsbruck, Uni. of Tokyo, Lulea Uni. of

Tech., pp. 1-14, Sep.2021.

[18] F. Mendes, “Consistent and Efficient Application Caching”, Nova School of Science and

Technology, Oct. 2023.

[19] V. Meena, K. Krithivasan, P. Rahul, and T. S. Praba, “Toward an Intelligent Cache

Management: In an Edge Computing Era for Delay Sensitive IoT Applications”, Wireless

Personal Communications, vol. 131, pp. 1075-1088, Apr. 2023.

[20] Y. Wang, S. Li, Q. Zheng, A. Chang, H. Li, and Y. Chen, “EMS-i: An Efficient Memory

System Design with Specialized Caching Mechanism for Recommendation Inference”, ACM

Transactions on Embedded Computing Systems, vol. 22, issue 5s, art. no 100, pp. 1-22, Sep. 2023.

[21] R. Alubady, M. Salman, and A. S. Mohamed, “A review of modern caching strategies in

named data network: overview, classification, and research directions”, Telecommunication

Systems, vol. 84, pp. 581-626, Sep. 2023.

https://thesciencebrigade.com/?utm_source=ArticleHeader&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://jadr.thelawbrigade.com/policy/creative-commons-license-policy/

