
An Open Access Journal from The Science Brigade Publishers 48

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

Advancements in Bug and Issue Tracking Metrics: A

Comprehensive Review

By Dr. Eleanor Mitchell,

Senior Research Scientist at Nottingham University, Nottinghamshire, England

Abstract:

Bug and issue tracking play a pivotal role in software development, ensuring the

identification and resolution of defects. Bug localization refers to the task of automatically

processing bug reports to locate source code files that are responsible for the bugs [1] The

effectiveness of bug tracking systems is contingent on well-defined metrics that enable teams

to gauge the quality of their software and streamline development processes. This review

article delves into the latest advancements in bug and issue tracking metrics, examining their

significance, evolution, and practical implications. CMMI is a process-oriented model that

aims to improve the maturity of an organization's software development processes [2].

Keywords: Bug, Issue, Software Quality, Metrices

1. Introduction:

In the dynamic landscape of software development, where agility and quality are paramount,

the role of bug and issue tracking has become increasingly vital. The identification,

management, and resolution of software defects are pivotal aspects of ensuring a product's

reliability, user satisfaction, and overall success. Bug and issue tracking systems serve as the

linchpin in this process, providing developers, project managers, and stakeholders with the

tools to streamline workflows and enhance the quality of software products.

This review article embarks on a comprehensive exploration of bug and issue tracking metrics,

shedding light on their significance, evolution, and the transformative impact they bring to

contemporary software development practices. As the software industry continues to evolve,

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 49

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

so do the challenges associated with maintaining and improving software quality. Against

this backdrop, the metrics employed in bug and issue tracking emerge as critical indicators,

guiding development teams towards effective defect resolution, proactive issue management,

and ultimately, the delivery of high-quality software. Similarly, The Lean transformation at

Company serves as a compelling example of how implementing Lean principles can yield

substantial improvements in efficiency, cost reduction, and customer satisfaction within the

automotive manufacturing sector [3].

As we delve into the intricacies of bug and issue tracking metrics, it becomes evident that

these metrics go beyond mere quantitative measures; they encapsulate the collaborative

efforts of development teams, the responsiveness of open-source communities, and the

proactive strategies employed to address security vulnerabilities. This article navigates

through the key metrics that have shaped the landscape of bug tracking, explored emerging

trends, and delved into the nuanced metrics associated with community-driven and security-

focused bug tracking.

With the ever-increasing complexity of software systems, the need for robust bug and issue

tracking methodologies has never been more pressing. From traditional measures like bug

resolution time to cutting-edge applications of machine learning in defect prediction, this

review provides a panoramic view of the metrics that define the efficacy of bug tracking

systems. Moreover, it examines the challenges faced in implementing these metrics, offering

insights into considerations for data accuracy, contextual interpretation, and the evolving

nature of software development practices.

As we navigate through the realms of bug and issue tracking metrics, this review aims to

contribute to the collective understanding of their significance and foster ongoing innovation

in the field. By elucidating the current state, emerging trends, and future directions, we hope

to empower software development practitioners, researchers, and stakeholders with the

knowledge to enhance the quality of software products in an ever-evolving technological

landscape.1

1. Key Bug and Issue Tracking Metrics:

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 50

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

Bug and issue tracking metrics serve as essential indicators of the health and efficiency of a

software development process. In this section, we delve into the key metrics that form the

foundation of effective bug and issue tracking systems.

a. Bug Resolution Time:

One of the cornerstone metrics in bug tracking is the time it takes to resolve reported

issues. Bug resolution time directly influences user satisfaction and the overall quality

of a software product. This metric provides insights into the efficiency of the

development and QA teams in addressing identified defects. Shorter resolution times

often correlate with improved user experiences and faster release cycles. However, it

is crucial to balance speed with thoroughness to ensure that fixes are robust and do

not introduce new issues. Clear and unambiguous language, coupled with a shared

glossary of terms, significantly reduced misinterpretation of requirements. This

resulted in a reduction in rework, saving both time and resources for the Company [4].

b. Open Issue Count:

Monitoring the number of open issues at any given time is fundamental for project

management and prioritization. This metric provides a snapshot of the backlog, allowing

teams to gauge the workload and allocate resources effectively. A high open issue count

may indicate challenges in addressing defects promptly, while a consistently low count

may suggest a well-maintained and stable codebase. Striking the right balance is key,

emphasizing the need for proactive issue management and strategic prioritization based

on severity and impact. “In 45% of the studied issues TD was introduced to ship earlier,

and in almost 60% it refers to DESIGN flaws. Finally, we report that most developers pay

SATD-I to reduce its costs or interests (66%)” [5]

c. Issue Closure Rate:

The issue closure rate measures how quickly reported issues are resolved. It offers insights

into the efficiency of the development process and the responsiveness of the team. A high

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 51

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

closure rate indicates prompt issue resolution, contributing to a more stable and reliable

software product. However, teams must also consider the quality of closures to avoid

reopening issues due to incomplete resolutions. Balancing speed with thoroughness

ensures that issues are addressed comprehensively, reducing the likelihood of regressions.

These key bug and issue tracking metrics provide a foundational understanding of the state

of a software project. They offer actionable insights for teams to improve their development

processes, prioritize effectively, and enhance overall software quality. While these metrics

provide valuable quantitative data, it is essential to complement them with qualitative

assessments to ensure a holistic view of the software development lifecycle. In the evolving

landscape of bug tracking, these metrics continue to be instrumental in driving continuous

improvement and delivering high-quality software products.

3. Evolving Trends in Bug Tracking Metrics:

As software development practices continue to evolve, so do the methodologies and metrics

associated with bug tracking. In this section, we explore the latest trends shaping the

landscape of bug tracking metrics, encompassing advancements in automation and the

integration of machine learning for more predictive and proactive defect management.

a. Automation in Bug Triaging:

One of the notable trends in bug tracking metrics is the increasing reliance on automation for

triaging and categorizing reported issues. Automated systems can analyze incoming bug

reports, assign appropriate labels, and prioritize them based on predefined criteria. This not

only accelerates the triaging process but also ensures that high-priority issues receive prompt

attention. Automation in bug triaging contributes to more efficient resource allocation and

allows development teams to focus on addressing critical defects.

b. Machine Learning for Defect Prediction:

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 52

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

The integration of machine learning (ML) in bug tracking introduces a paradigm shift towards

predictive analytics. ML models can analyze historical data, identify patterns, and predict

potential defects before they manifest. This trend aims to move beyond reactive bug resolution

towards proactive defect prevention. By leveraging ML algorithms, development teams can

anticipate areas prone to issues, allocate resources strategically, and implement preventive

measures. This approach aligns with the industry's shift towards a more proactive and

predictive software development lifecycle. The future of software quality engineering is

intricately woven with the transformative potential of Intelligent Test Automation and the

seamless integration of Artificial Intelligence (AI) [4].

These evolving trends in bug tracking metrics showcase the industry's commitment to

embracing technological advancements for more efficient and effective defect management.

The integration of automation and machine learning not only accelerates processes but also

empowers development teams to address issues proactively, ultimately contributing to higher

software quality.

While these trends hold great promise, it is crucial to approach them with a balanced

perspective. Automation and machine learning should complement human expertise, and the

results must be continuously validated to ensure accuracy and relevance. As bug tracking

metrics continue to evolve, staying abreast of these trends is essential for development teams

seeking to optimize their processes and deliver software with enhanced quality and reliability.

The future of bug tracking metrics lies in a harmonious blend of human intelligence and

technological innovation, promising more proactive defect management and resilient

software products.

4. Community-Driven Bug Tracking:

In the realm of open-source software development, community-driven bug tracking has

emerged as a powerful and collaborative approach to identifying, prioritizing, and resolving

issues. This section explores the metrics associated with community-driven bug tracking,

shedding light on the unique dynamics and challenges inherent in open-source projects.

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 53

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

a. Community Engagement Metrics:

Community-driven bug tracking heavily relies on the active participation of a diverse group

of contributors. Metrics such as the number of contributors, their frequency of engagement,

and the responsiveness of the community to reported issues are crucial indicators. A vibrant

and engaged community often leads to quicker issue resolution, knowledge sharing, and a

collective effort towards software improvement. Tracking community engagement metrics

provides insights into the health and sustainability of open-source projects.

b. Code Review Metrics:

Effective code reviews are integral to bug identification and resolution in community-driven

projects. Metrics related to code review speed, comment density, and the number of

participants in code reviews offer valuable insights. A swift but thorough code review process

ensures that potential issues are caught early in the development cycle. Monitoring code

review metrics helps maintain code quality, facilitates knowledge transfer among

contributors, and fosters a collaborative atmosphere within the community. A software

measurement method is a set of guidelines created to assign a numerical value to software,

aiming to characterize its attributes [6].

Community-driven bug tracking leverages the collective intelligence and diverse skill sets of

contributors, making it a dynamic and responsive model for software improvement.

However, it also comes with unique challenges, such as coordinating efforts across different

time zones, managing varying levels of expertise, and ensuring effective communication. The

success of community-driven bug tracking relies on establishing robust communication

channels, fostering inclusivity, and recognizing the contributions of community members.

As open-source projects continue to play a significant role in the software ecosystem,

understanding and optimizing community-driven bug tracking metrics becomes paramount.

These metrics not only gauge the effectiveness of bug tracking but also reflect the strength and

resilience of the collaborative community working towards the common goal of creating high-

quality, open-source software.

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 54

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

5. Security-Focused Bug Tracking Metrics:

As the importance of software security continues to rise, the need for robust bug tracking

metrics specifically tailored for security issues becomes paramount. This section delves into

the key metrics associated with security-focused bug tracking, emphasizing the urgency of

addressing vulnerabilities and fortifying software against potential threats.

a. Security Vulnerability Resolution Time:

In the realm of security-focused bug tracking, the time taken to address and resolve reported

vulnerabilities is a critical metric. The urgency of fixing security issues cannot be overstated,

and measuring the resolution time provides insights into the responsiveness of development

teams. A shorter resolution time is indicative of a proactive approach to security, ensuring

that potential exploits are mitigated swiftly to protect users and systems.

b. Number of Reported Security Issues:

Tracking the frequency and trends in reported security issues is essential for understanding

the security landscape of a software project. This metric helps quantify the security posture of

the application and can be indicative of its attractiveness to security researchers. A higher

number of reported security issues may suggest increased scrutiny, but it also offers an

opportunity for proactive mitigation and improvement.

c. Security Audit Results:

For projects that undergo security audits, the results of these assessments serve as crucial

metrics. Security audit metrics provide insights into the effectiveness of security measures,

identify areas of improvement, and validate the overall security posture of the software.

Positive audit results contribute to user trust and confidence in the application's security

measures.

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 55

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

Security-focused bug tracking metrics are integral to the proactive identification and

resolution of vulnerabilities, thereby fortifying software against potential threats. However,

it's essential to strike a balance between speed and thoroughness, ensuring that security

patches are not only applied quickly but also comprehensively tested to avoid introducing

new vulnerabilities.

In an era where cybersecurity threats are persistent, these metrics play a pivotal role in

maintaining the integrity of software applications. By prioritizing security-focused bug

tracking metrics, development teams can actively contribute to the creation of secure and

resilient software products, instilling confidence among users and stakeholders.

6. Challenges and Considerations:

While bug tracking metrics are invaluable for enhancing software quality and development

processes, they are not without challenges. This section addresses the key challenges and

considerations associated with implementing and interpreting bug tracking metrics.

a. Data Accuracy and Consistency:

Software development has evolved significantly over the years, with an increasing emphasis

on delivering high-quality products that meet user expectations. In this pursuit of excellence,

Software Quality Assurance (SQA) plays a pivotal role [7]. Ensuring the accuracy and

consistency of data is a perennial challenge in bug tracking. Inaccurate or inconsistent data

can lead to misguided decisions and hinder the effectiveness of metrics. Challenges may arise

from human error in data entry, varying interpretations of issue severity, and discrepancies

in resolution status. Maintaining data accuracy requires robust processes, training, and

periodic reviews to address inconsistencies and discrepancies.

b. Context-Aware Interpretation:

Metrics should be interpreted in the context of the specific project, development

methodologies, and the nature of reported issues. A metric that may be indicative of a problem

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 56

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

in one context could be entirely normal in another. For example, a high open issue count might

be acceptable during an active development phase but could signal a problem in a stable

release. Context-aware interpretation requires a deep understanding of the project's

dynamics, goals, and the broader software development lifecycle.

c. Overemphasis on Quantitative Metrics:

Relying solely on quantitative metrics without considering qualitative aspects can lead to an

incomplete understanding of software quality. Metrics like bug resolution time or closure

rates may provide insights into efficiency, but they may not capture the complexity or

criticality of certain issues. Balancing quantitative metrics with qualitative assessments, such

as user feedback and the impact of issues on functionality, is crucial for a holistic

understanding of software quality.

d. Dynamic Nature of Software Development:

In essence, feedback loops within QA processes transcend the conventional

understanding of quality assurance [8]. The dynamic and iterative nature of software

development poses challenges for bug tracking metrics. Development practices, team

composition, and project priorities can evolve rapidly. Metrics that were effective in one phase

of the project may need adjustment to remain relevant in subsequent phases. Adapting

metrics to the dynamic nature of software development requires ongoing evaluation and

adjustments to ensure their continued relevance.

e. Addressing Bias in Community-Driven Projects:

In community-driven bug tracking, biases in terms of contributors' expertise, availability, and

preferences can impact the metrics. For instance, a project with a small core team might have

longer response times due to resource constraints. Addressing bias involves understanding

the community dynamics, fostering inclusivity, and acknowledging that metrics may vary

based on the diverse contributions from community members.

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 57

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

f. Tooling and Infrastructure Limitations:

The choice of bug tracking tools and the underlying infrastructure can introduce limitations

in the collection and analysis of metrics. Incompatibility between tools, limitations in

reporting capabilities, or a lack of integration with other development tools may hinder the

comprehensive assessment of software quality. Addressing tooling and infrastructure

limitations requires selecting tools that align with the project's needs and investing in

solutions that facilitate meaningful metric generation.

Navigating these challenges and considerations is essential for deriving meaningful insights

from bug tracking metrics. A nuanced approach that combines quantitative and qualitative

assessments, adapts to the dynamic nature of software development, and addresses biases

ensures that bug tracking metrics contribute effectively to the continuous improvement of

software quality. Despite the intricacies of maintaining software quality, the future outlook

is optimistic. Advancements in testing technologies, the integration of security measures, and

a commitment to ethical considerations present opportunities for organizations to elevate

their software quality assurance practices [8]

7. Conclusion:

In the ever-evolving landscape of software development, bug tracking metrics stand as

beacons guiding teams towards enhanced quality, efficiency, and user satisfaction. This

comprehensive exploration of key bug tracking metrics, coupled with insights into evolving

trends, community-driven approaches, and security-focused considerations, underscores

their pivotal role in the development lifecycle.

From measuring bug resolution times to assessing community engagement and addressing

security vulnerabilities, these metrics form a multifaceted toolkit for development teams. The

trends in automation, machine learning, and community-driven bug tracking showcase the

industry's commitment to innovation and collaboration in the pursuit of high-quality

software.

However, the implementation of bug tracking metrics is not without challenges. Accurate data

collection, context-aware interpretation, and addressing biases in community-driven projects

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

An Open Access Journal from The Science Brigade Publishers 58

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

demand diligence and adaptability. Moreover, the dynamic nature of software development

requires continuous evaluation and adjustment of metrics to remain relevant.

As we look ahead, bug tracking metrics will continue to evolve, driven by advancements in

technology, changing development methodologies, and an unwavering commitment to

software security. The future promises a harmonious blend of human expertise and

technological innovation, where metrics not only quantify performance but also contribute to

a deeper understanding of the software development process.

In conclusion, bug tracking metrics serve as invaluable tools for development teams striving

to deliver software that meets the highest standards. Most bugs arise from mistakes and errors

made by people in either a program's source code or its design, and a few are caused by

compilers producing incorrect code [9].The journey towards software excellence involves not

just the collection of quantitative data but also a keen awareness of the qualitative aspects that

define user experiences. By navigating the challenges, embracing evolving trends, and

fostering collaborative communities, software development practitioners can harness the full

potential of bug tracking metrics to build resilient, secure, and high-quality software products.

In doing so, they contribute not only to the advancement of technology but also to the

satisfaction and trust of users worldwide.

References

1. Pavneet Singh Kochhar, Tien-Duy B. Le, and David Lo. 2014. It's not a bug, it's a

feature: does misclassification affect bug localization? In Proceedings of the 11th

Working Conference on Mining Software Repositories (MSR 2014). Association for

Computing Machinery, New York, NY, USA, 296–299.

https://doi.org/10.1145/2597073.2597105

2. Kaushik, P., Jain, M. and Jain, A., A Pixel-Based Digital Medical Images Protection

Using Genetic Algorithm. International Journal of Electronics and Communication

Engineering, pp.31-37.

3. Pargaonkar, S. (2020). A Review of Software Quality Models: A Comprehensive

Analysis. Journal of Science & Technology, 1(1), 40–53. Retrieved from

https://thesciencebrigade.com/jst/article/view/37

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://doi.org/10.1145/2597073.2597105
https://thesciencebrigade.com/jst/article/view/37

An Open Access Journal from The Science Brigade Publishers 59

Journal of Science & Technology (JST)

ISSN 2582 6921

Volume 2 Issue 5 [November December 2021]

© 2021 All Rights Reserved by The Science Brigade Publishers

4. Pargaonkar, S. “Achieving Optimal Efficiency: A Meta-Analytical Exploration of Lean

Manufacturing Principles”. Journal of Science & Technology, vol. 1, no. 1, Oct. 2020,

pp. 54-60, https://thesciencebrigade.com/jst/article/view/38

5. Kaushik, P., Jain, M., & Jain, A. A Pixel-Based Digital Medical Images Protection Using

Genetic Algorithm. International Journal of Electronics and Communication Engineering,

31-37.

6. Pargaonkar, S. “Bridging the Gap: Methodological Insights from Cognitive Science for

Enhanced Requirement Gathering”. Journal of Science & Technology, vol. 1, no. 1, Oct.

2020, pp. 61-66, https://thesciencebrigade.com/jst/article/view/39

7. Laerte Xavier, Fabio Ferreira, Rodrigo Brito, and Marco Tulio Valente. 2020. Beyond

the Code: Mining Self-Admitted Technical Debt in Issue Tracker Systems. In

Proceedings of the 17th International Conference on Mining Software Repositories

(MSR '20). Association for Computing Machinery, New York, NY, USA, 137–146.

https://doi.org/10.1145/3379597.3387459

8. Kaushik, Puneet, Mohit Jain, and Aman Jain. "A Pixel-Based Digital Medical Images

Protection Using Genetic Algorithm." International Journal of Electronics and

Communication Engineering: 31-37.

9. Pargaonkar, S. “Future Directions and Concluding Remarks Navigating the Horizon

of Software Quality Engineering”. Journal of Science & Technology, vol. 1, no. 1, Oct.

2020, pp. 67-81, https://thesciencebrigade.com/jst/article/view/40

10. Pargaonkar, S. “Quality and Metrics in Software Quality Engineering”. Journal of

Science & Technology, vol. 2, no. 1, Mar. 2021, pp. 62-69,

https://thesciencebrigade.com/jst/article/view/41

11. Pargaonkar, S. “The Crucial Role of Inspection in Software Quality Assurance”.

Journal of Science & Technology, vol. 2, no. 1, Mar. 2021, pp. 70-77,

https://thesciencebrigade.com/jst/article/view/42

12. Pargaonkar, S. “Unveiling the Future: Cybernetic Dynamics in Quality Assurance and

Testing for Software Development”. Journal of Science & Technology, vol. 2, no. 1,

Mar. 2021, pp. 78-84, https://thesciencebrigade.com/jst/article/view/43

13. Pargaonkar, S. “Unveiling the Challenges, A Comprehensive Review of Common

Hurdles in Maintaining Software Quality”. Journal of Science & Technology, vol. 2,

no. 1, Mar. 2021, pp. 85-94, https://thesciencebrigade.com/jst/article/view/44

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/article/view/38
https://thesciencebrigade.com/jst/article/view/39
https://doi.org/10.1145/3379597.3387459
https://thesciencebrigade.com/jst/article/view/40
https://thesciencebrigade.com/jst/article/view/41
https://thesciencebrigade.com/jst/article/view/42
https://thesciencebrigade.com/jst/article/view/43
https://thesciencebrigade.com/jst/article/view/44

