
An Open Access Journal from The Science Brigade Publishers  83 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Comprehensive review: Key metrics in defect prediction 

Models 

By Dr. Emily Hughes, 

Head of Machine Learning Research Center at Oxford University, Oxford, England 

 

Abstract:  

Defect prediction models are crucial in identifying potential issues within software systems. 

Numerous software quality models have been proposed and developed to assess and improve 

the quality of software products [1]. This article explores key metrics employed in defect 

prediction models, including Lines of Code, Cyclomatic Complexity, Code Churn, Code 

Coupling, Code Complexity Metrics, Code Smells, Test Metrics, Developer Collaboration 

Metrics, Historical Defect Density, Size of Changes, and Contextual Metrics. These metrics 

provide quantitative insights into code quality and defect proneness. Defective software 

modules cause software failures, increase development and maintenance costs, and decrease 

customer satisfaction [2]. However, challenges such as imbalanced datasets, evolving 

software projects, overfitting, context sensitivity, lack of standardization, and incorporating 

human factors need addressing. Evaluation metrics and validation techniques, including 

cross-validation and external validation, play a vital role in overcoming these challenges and 

improving the accuracy and applicability of defect prediction models. 

Keywords: Defect prediction models, metrics, line of code, code smells.  

 

Introduction: 

In the realm of defect prediction models, the accurate identification of potential issues within 

software systems is paramount. Defect prediction models-classifiers that identify defect-prone 

software modules-have configurable parameters that control their characteristics (e.g., the 

number of trees in a random forest) [3]. Key metrics serve as quantifiable indicators of various 

aspects of code quality, complexity, and development processes. This section delves into the 

essential metrics used in defect prediction models, ranging from Lines of Code and 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  84 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Cyclomatic Complexity to Test Metrics and Developer Collaboration Metrics. While these 

metrics offer valuable insights, challenges persist, such as imbalanced datasets, evolving 

software projects, and the need for standardized practices. Addressing these challenges 

requires a multidimensional approach, combining innovative model development, rigorous 

evaluation practices, and an understanding of the dynamic nature of software projects. 

 

Key Metrics in Defect Prediction Models: 

In the realm of defect prediction models, the selection and analysis of key metrics play a 

pivotal role in accurately identifying potential issues within software systems. These metrics 

serve as quantifiable indicators of various aspects of code quality, complexity, and 

development processes. This section explores the essential key metrics commonly employed 

in defect prediction models. 

 

Lines of Code (LOC): 

Lines of Code is a fundamental metric used to measure the size and complexity of a software 

module. While a larger LOC may indicate increased functionality, it can also correlate with a 

higher likelihood of defects. Defect prediction models often consider the size of code segments 

as a primary metric, acknowledging the inherent relationship between code volume and 

potential vulnerabilities. By synthesizing  findings  from  various studies,  this  review  aims  

to  provide  a  holistic  understanding  of  the  effectiveness  of  lean practices in achieving 

optimal efficiency within manufacturing processes [4]. 

 

Cyclomatic Complexity: 

Cyclomatic Complexity measures the structural complexity of code by quantifying the 

number of independent paths through a program's source code. High cyclomatic complexity 

suggests intricate decision structures, which can increase the likelihood of defects. Defect 

prediction models leverage this metric to assess the code's complexity and identify areas 

prone to potential issues. 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  85 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Code Churn: 

Code Churn reflects the frequency of code changes over time. High code churn may indicate 

areas of code under active development or significant modifications. Defect prediction models 

use code churn as a metric to identify volatile code sections where frequent changes might 

introduce defects. Understanding the relationship between code churn and defect occurrence 

aids in proactive defect management. 

 

Code Coupling: 

Code Coupling measures the degree of interdependence between software modules or 

components. High code coupling suggests tight integration between modules, increasing the 

likelihood that changes in one module may impact others. Defect prediction models analyze 

code coupling to identify potential ripple effects, helping developers focus on areas where 

defects are more likely to propagate. The introduction provides an  overview  of  the  critical  

role  requirement  gathering  plays  in successful  project  outcomes  and  the  historical  

challenges  associated  with  this  phase [6]. 

 

Code Complexity Metrics (e.g., McCabe's Complexity): 

Various complexity metrics, such as McCabe's Cyclomatic Complexity, assess the intricacy of 

control flow within code. Defect prediction is an important task for preserving software 

quality [5]. These metrics quantify the number of decision points and loops in a program. 

Higher complexity values are associated with increased potential for defects. Defect 

prediction models consider code complexity metrics to pinpoint areas where code intricacy 

may pose challenges to software quality. 

 

Code Smells: 

Code smells are indicative of poor coding practices that may lead to defects. These include 

anti-patterns, duplications, and other indicators of suboptimal code quality. Defect prediction 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  86 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

models incorporate code smell metrics to identify areas where refactoring or code 

improvement may be necessary, reducing the likelihood of future defects. 

 

Test Metrics (e.g., Test Coverage): 

Test metrics, including test coverage, assess the extent to which code is exercised by test cases. 

Higher test coverage often correlates with lower defect density. Defect prediction models 

consider test metrics to evaluate the effectiveness of testing practices and identify areas with 

insufficient test coverage that may be susceptible to defects. 

 

Developer Collaboration Metrics: 

Metrics related to developer collaboration, such as the number of developers contributing to 

a code segment or social network analysis within development teams, offer insights into the 

collaborative aspects of software development. Defect prediction models leverage these 

metrics to understand how collaboration patterns influence code quality and defect 

proneness. 

 

Historical Defect Density: 

Historical defect density measures the frequency of defects in past releases or iterations. This 

metric provides valuable information about the software's defect history and can be a strong 

predictor of future defect occurrences. Defect prediction models analyze historical defect 

density to identify patterns and trends, helping prioritize testing efforts in areas with a higher 

likelihood of defects. 

 

Size of Changes (e.g., Lines Added/Removed): 

The size of changes in code, such as the number of lines added or removed in a code segment, 

is a metric used to assess the magnitude of modifications. Defect prediction models consider 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  87 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

this metric to identify areas undergoing substantial changes, as larger modifications may 

introduce defects. Monitoring the size of changes aids in prioritizing defect prevention efforts. 

 

Contextual Metrics (e.g., Project-Specific Attributes): 

Contextual metrics encompass project-specific attributes, such as team size, development 

methodology, and project history. Defect prediction models increasingly recognize the 

influence of contextual factors on defect occurrence. Analyzing contextual metrics helps tailor 

defect prediction models to the unique characteristics of individual software projects, 

enhancing prediction accuracy. Engineering. The future  of  software  quality  engineering  is  

intricately  woven  with  the  transformative potential of Intelligent Test Automation and the 

seamless integration of Artificial Intelligence (AI) [7].    

 

Challenges and Considerations: 

While key metrics provide valuable insights into code quality and defect proneness, 

challenges exist in their selection and interpretation. Defect prediction models need to 

consider the dynamic nature of software projects, the impact of evolving development 

practices, and the need for domain-specific metrics. Additionally, the challenge of imbalanced 

datasets, where the number of defect instances is significantly lower than non-defect 

instances, requires careful consideration in metric analysis. The assessment of quality has been 

a longstanding challenge, prompting the formulation of the first quality standards by the 

International Standards Organization (ISO) in the late 80s [8]. 

In conclusion, key metrics are the foundation of defect prediction models, offering a 

quantitative lens through which software quality can be assessed. Inspection, a  formalized 

evaluation  technique,  involves  a  collaborative  examination  of  software  artifacts  to  

identify defects  and  inconsistencies  early  in  the  development  life  cycle [9]. As the field 

continues to evolve, researchers and practitioners must navigate the complexities of metric 

selection, considering both traditional indicators and innovative metrics to enhance the 

accuracy and applicability of defect prediction models in diverse software development 

environments. 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  88 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Challenges in Defect Prediction Models: 

Despite the advancements in defect prediction models, several challenges persist, influencing 

the accuracy, reliability, and practical applicability of these models. Understanding and 

addressing these challenges are crucial for the continued improvement and effectiveness of 

defect prediction in software engineering. In  the  intricate  world  of  software  development,  

the  quest  for  reliability  and  performance  is unending [10]. 

 

Imbalanced Datasets: 

One of the pervasive challenges in defect prediction models is dealing with imbalanced 

datasets. In many software projects, the number of defective instances is significantly lower 

than non-defect instances. This imbalance can lead to biased models that are inclined to 

predict the majority class, affecting the overall effectiveness of defect prediction. Mitigating 

the impact of imbalanced datasets requires careful preprocessing techniques and model 

adjustments. 

 

Evolving Software Projects: 

The dynamic nature of software projects poses a challenge for defect prediction models. 

Projects undergo changes in requirements, team composition, and development 

methodologies over time. Models trained on historical data may become less relevant as 

projects evolve. Adapting defect prediction models to the changing nature of software projects 

remains an ongoing challenge, necessitating continuous model retraining and adjustment. 

The adoption of emerging technologies such as artificial intelligence, the Internet of Things, 

and blockchain introduces novel challenges in terms of testing methodologies and the 

identification  of  potential  risks [11] 

 

Overfitting and Generalization: 

Overfitting, where a model learns noise or specifics of the training data rather than general 

patterns, is a challenge in defect prediction. Models that overfit may not generalize well to 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  89 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

new, unseen data. Striking a balance between capturing relevant patterns and avoiding 

overfitting is crucial. Regularization techniques and careful feature selection are employed to 

address this challenge. 

 

Context Sensitivity: 

Defect prediction models often struggle with context sensitivity. The same set of metrics or 

features may not universally apply to all software projects due to variations in project size, 

development teams, and application domains. Context-aware defect prediction models 

attempt to address this challenge by tailoring predictions to the specific characteristics of 

individual projects, but achieving a balance between context sensitivity and model 

generalization remains a complex task. 

 

Lack of Standardization: 

The absence of standardized practices and metrics for defect prediction poses a challenge for 

model evaluation and comparison. Different studies may use diverse sets of metrics, making 

it challenging to establish a benchmark for model performance. The lack of standardization 

hinders the reproducibility of results and the development of universally applicable defect 

prediction models. 

 

Incorporating Human Factors: 

Defect prediction models often focus on quantitative metrics derived from code and 

development processes, overlooking the impact of human factors. Human aspects, such as 

developer experience, collaboration patterns, and communication dynamics, influence code 

quality. Integrating human factors into defect prediction models requires a nuanced 

understanding of the socio-technical aspects of software development. 

 

Evaluation Metrics and Validation Techniques: 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  90 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

Choice of Evaluation Metrics: 

Selecting appropriate evaluation metrics is critical for assessing the performance of defect 

prediction models. Common metrics include precision, recall, F1 score, area under the 

Receiver Operating Characteristic (ROC) curve, and others. However, the choice of metrics 

depends on the specific goals and requirements of the software development context. For 

instance, precision may be more critical than recall in certain scenarios, and the F1 score 

provides a balance between precision and recall. 

 

Cross-Validation and Holdout Sets: 

Cross-validation techniques, such as k-fold cross-validation, are commonly employed to 

evaluate defect prediction models. These techniques partition the dataset into multiple folds, 

training the model on subsets and validating on the remaining data. Holdout sets, where a 

portion of the data is reserved for final model validation, are also used. However, the 

effectiveness of these techniques depends on the characteristics of the dataset and the stability 

of the model across different subsets. 

 

Addressing Data Leakage: 

Data leakage, where information from the validation set inadvertently influences the training 

process, is a concern in defect prediction model evaluation. Rigorous practices, such as proper 

data partitioning and feature scaling, are employed to prevent data leakage and ensure the 

model's ability to generalize to new, unseen data. 

 

External Validation and Real-world Applicability: 

Defect prediction models are often evaluated on historical datasets from specific projects. 

However, external validation on diverse datasets from different projects and organizations is 

crucial to assess the generalizability of the models. Ensuring that defect prediction models 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Science Brigade Publishers  91 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

exhibit robust performance across various software development contexts enhances their real-

world applicability. 

 

Addressing Bias in Model Evaluation: 

Bias in model evaluation, such as biased sampling or inappropriate choice of evaluation 

metrics, can lead to distorted perceptions of a model's effectiveness. Rigorous evaluation 

practices, transparency in reporting results, and sensitivity analyses help address bias and 

provide a more accurate assessment of a defect prediction model's performance. 

 

In conclusion, overcoming the challenges in defect prediction models requires a 

multidimensional approach, combining innovative model development, rigorous evaluation 

practices, and an understanding of the dynamic nature of software projects. By addressing 

these challenges, researchers and practitioners can advance the field, creating defect 

prediction models that are more accurate, adaptable, and applicable in diverse software 

development environments. 

 

References 

1. Pargaonkar, S. (2020). A Review of Software Quality Models: A Comprehensive 

Analysis. Journal of Science & Technology, 1(1), 40–53. Retrieved from 

https://thesciencebrigade.com/jst/article/view/37. 

2. A. G. Koru and H. Liu, "Building effective defect-prediction models in practice," in 

IEEE Software, vol. 22, no. 6, pp. 23-29, Nov.-Dec. 2005, doi: 10.1109/MS.2005.149. 

3. C. Tantithamthavorn, S. McIntosh, A. E. Hassan and K. Matsumoto, "The Impact of 

Automated Parameter Optimization on Defect Prediction Models," in IEEE 

Transactions on Software Engineering, vol. 45, no. 7, pp. 683-711, 1 July 2019, doi: 

10.1109/TSE.2018.2794977.  

4. Pargaonkar, S. “Achieving Optimal Efficiency: A Meta-Analytical Exploration of Lean 

Manufacturing Principles”. Journal of Science & Technology, vol. 1, no. 1, Oct. 2020, 

pp. 54-60, https://thesciencebrigade.com/jst/article/view/38 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/article/view/37
https://thesciencebrigade.com/jst/article/view/38


An Open Access Journal from The Science Brigade Publishers  92 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 5  [November December 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

5. Ghotra, B., McIntosh, S., & Hassan, A. E. (2015, May). Revisiting the impact of 

classification techniques on the performance of defect prediction models. In 2015 

IEEE/ACM 37th IEEE International Conference on Software Engineering (Vol. 1, pp. 

789-800). IEEE. 

6. Pargaonkar, S. “Bridging the Gap: Methodological Insights from Cognitive Science for 

Enhanced Requirement Gathering”. Journal of Science & Technology, vol. 1, no. 1, Oct. 

2020, pp. 61-66, https://thesciencebrigade.com/jst/article/view/39 

7. Pargaonkar, S. “Future Directions and Concluding Remarks Navigating the Horizon 

of Software Quality Engineering”. Journal of Science & Technology, vol. 1, no. 1, Oct. 

2020, pp. 67-81, https://thesciencebrigade.com/jst/article/view/40 

8. Pargaonkar, S. “Quality and Metrics in Software Quality Engineering”. Journal of 

Science & Technology, vol. 2, no. 1, Mar. 2021, pp. 62-69, 

https://thesciencebrigade.com/jst/article/view/41 

9. Pargaonkar, S. “The Crucial Role of Inspection in Software Quality Assurance”. 

Journal of Science & Technology, vol. 2, no. 1, Mar. 2021, pp. 70-77, 

https://thesciencebrigade.com/jst/article/view/42 

10. Pargaonkar, S. “Unveiling the Future: Cybernetic Dynamics in Quality Assurance and 

Testing for Software Development”. Journal of Science & Technology, vol. 2, no. 1, 

Mar. 2021, pp. 78-84, https://thesciencebrigade.com/jst/article/view/43 

11. Pargaonkar, S. “Unveiling the Challenges, A Comprehensive Review of Common 

Hurdles in Maintaining Software Quality”. Journal of Science & Technology, vol. 2, 

no. 1, Mar. 2021, pp. 85-94, https://thesciencebrigade.com/jst/article/view/44 

https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/article/view/39
https://thesciencebrigade.com/jst/article/view/40
https://thesciencebrigade.com/jst/article/view/41
https://thesciencebrigade.com/jst/article/view/42
https://thesciencebrigade.com/jst/article/view/43
https://thesciencebrigade.com/jst/article/view/44

