
An Open Access Journal from The Law Brigade Publishers  95 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

AI and Software Engineering: Rapid Process Improvement 

through Advanced Techniques 

By Meghasai Bodimani 

Department of Computer Science, University of Missouri, Kansas City, USA  
 

DOI: 10.55662/JST.2021.2101 
 

 

 

Abstract –  

In recent years, a variety of research have effectively applied machine learning approaches across a broad 

range of industries. This led to the creation of a large range of deep learning models, each adapted to a 

specific purpose in software development. There are various ways in which the software development 

business may benefit from employing deep learning models. Nowadays, nothing is more vital than 

consistently testing and maintaining software. Software engineers are responsible for a broad variety 

of duties during the lifespan of a software system, from original design to final delivery to clients via 

cloud-based platforms. It is evident from this list that all jobs involve meticulous planning and the 

availability of a range of materials. A developer may study a range of resources, including internal 

corporate resources, external websites with important programming material, and code repositories, 

before creating and testing a solution to the current issue. Finding out what went into building the  

recommended is what this inquiry is all about. Based on user feedback, this system examines the  

recommended's effectiveness and proposes methods to enhance the programme. 

Keywords- Artificial Intelligence, Machine Learning, Privacy Mechanisms, Network 

 

Introduction 

A software engineer's tasks include developing code, testing it, delivering it to the cloud, and 

engaging with stakeholders via email and meetings [1]. Finding and utilizing a broad range 

of information and resources, as well as planning and preparing for the next action, are critical 

components of each of these jobs [2]. A developer might perform research by looking at other 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  96 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

code repositories, websites with comparable programming content, or asking colleagues for 

guidance before coming up with a solution and testing it [3]. 

People fresh to the field might feel intimidated by the notion of carrying out these activities 

[4]. Even for seasoned programmers, it is quite difficult to attain near-perfect performance in 

these tasks. In order to boost efficiency and make job execution simpler,  recommended 

systems were invented in software engineering [5]. The word " recommendeds" is shorthand 

for computer systems that generate helpful data for software engineering activities [6]. Some  

recommendeds are really pertinent to software engineers’ job, therefore they're accustomed 

to using them. Use of  recommendeds in several IDEs, including Eclipse IDE4, may address 

the problem of missing declarations of imported objects in Java code [7]. 

Different recommendation systems have been constructed for different activities and 

procedures, such as code rearrangement, learning the upcoming set of instructions, and 

recognizing needs. An example of a productivity-enhancing tool is the Eclipse Mylyn 

recommendation, which delivers tailored recommendations on the source code connected 

with a given task. Recommendeds contain enormous unrealized potential in the software 

development process owing to their vast variety of capabilities [8]. 

A fundamental concern with the present  recommended system is its inclination to anticipate 

things that the user would regard as irrelevant or dull. Consequently, a  recommended system 

is essential to give services based on the similarity of items. By combining user and product 

data into a collaborative recommendation system, it is feasible to reliably discover customer 

preferences [9–11]. 

Building a recommended system starts with identifying the problem that needs solving and 

confirming the premise that the  recommended may give useful ideas to the developer 

working on the issue. A procedure called as "framing the problem" defines what occurs at this 

level. In order to comprehend the issue and its solution, we may go back to the introduction's 

description of a software engineering  recommended. Having a good knowledge of the job 

and situation in which a  recommended will be employed is crucial when considering its 

construction.. Another issue to consider is the intended audience of the  recommended: 

whether it is built for developers or end users. The idea of a task handled by a  recommended 

applies to the particular aim of a developer at a given moment in time, such as carrying out a 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  97 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

defined feature in the source code. While a developer keeps ongoing awareness of the current 

task, it is not always directly represented in the code. The context of a recommended applies 

to the unique information and tool environment in which a task is carried out. This covers 

aspects like as the available source code and other artefact, as well as the variety of tools that 

may be employed to execute the work. The context additionally contains the developer's 

efforts in completing the stated objective. This statement describes the conditions and 

substance of information that a recommended may offer: folks who are inexperienced 

typically have differing information needs in contrast to those who are highly aware. 

Although the first group may benefit from frequent offers, the latter group typically has a 

limited tolerance for interruptions that give information they already know. The key 

contributions of this paper are as follows: 

(a) The subject was framed as finding the inputs for creating the recommended. 

(b) This system makes software development ideas based on customer satisfaction and 

examines the efficiency of the recommended. 

 

Related Work 

The work by Wen et al. [12] studied machine learning models in detail, giving particular 

attention to four important areas: the ML technique employed, estimate accuracy, model 

comparison, and estimating environment. They set out to explore the setting of estimation as 

their major research objective. All empirical papers published on the machine learning model 

between 1991 and 2010 were rigorously evaluated. Models for software defect prediction 

(SDEE) incorporate eight distinct kinds of machine learning (ML) methodologies, as found 

following a thorough analysis of eighty-four main sources. When comparing machine 

learning models to non-ML models, the former frequently displays greater and virtually 

equivalent forecasting accuracy. This rationale explains why certain ML models perform 

better than others in specific estimate scenarios. Machine learning models offer considerable 

potential in SDEE. However, ML model application in the sector is still restricted, demanding 

more efforts and financial incentives. The author gives ideas for future research and guidance 

for existing practitioners based on the outcomes of this assessment. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  98 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

In light of the increased popularity of this method, Wan et al. [13] set out to examine how 

machine learning influences software development processes. After polling 342 individuals 

from 26 countries across 4 continents and interviewing 14 people, we discovered that machine 

learning systems have advanced significantly more slowly than non-machine learning 

systems. Our study demonstrates that the two groups differ greatly in terms of requirements, 

design, testing, and approach within software engineering, as well as in terms of job 

characteristics. Skills, problem-solving skills, and the capacity to recognise activities are some 

of these differences. The author made clear ideas and suggested possible future study areas 

based on our findings. 

Del Carpio and Angarita [14] obtained promising achievements by using machine learning 

algorithms to a range of categories of knowledge. There is optimism for the software 

industry's future systematic exploration of deep learning model-assisted software processes, 

given various models are currently focused on diverse software procedures. Subprocesses 

involved in software testing and maintenance were the principal focus of the research. 

Subprocesses that deal with bug reporting, malware categorization, and recommendation 

creation commonly employ deep learning models like CNN and RNN. When it comes to 

testing and maintenance, there are a number of ways to prioritise tasks like operate estimation, 

software requirement categorization, graphical feature recognition, code author 

identification, source code similarity commitment, defect forecasting and categorization, and 

analysis of bug reports. 

A lot of people are interested in AI today because of how it can automate hard or tiresome 

work, argue Meziane and Vadera [15]. No software engineering projects have departed from 

this criterion. The issues of AI and software maintenance are treated thoroughly in this thesis. 

Additionally, a detailed mapping investigation was done to evaluate the existing status of 

artificial intelligence as it applies to software maintenance activities. The study's four basic 

points were the following: the nature of the research, its influence on the field, the software 

maintenance domains, and the AI solution type. 

In their systematic review and meta-analysis, Barenkamp et al. [16] engaged five software 

engineers for qualitative interviews. The outcomes of the study are classed according to 

numerous stages of producing software. Algorithms that automate arduous and repetitive 

software testing and development activities, like bug finding and documentation, represent a 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  99 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

huge breakthrough in artificial intelligence. Artificial intelligence also makes it feasible to 

methodically evaluate massive datasets in search of patterns and fresh information clusters. 

In addition, AI makes it easy to apply neural networks for systematic investigation of these 

datasets. The usage of AI shortens development times, decreases expenditures, and enhances 

efficiency. When compared to contemporary AI systems, software engineering automation is 

light years ahead. These systems depend on frameworks that people have established and 

generally try to duplicate current knowledge. Developers' inventiveness could be aided by AI 

technology. 

According to Harman, software engineering approaches that incorporate artificial intelligence 

(AI) also deal with difficulties linked to software development [17]. The history of applying 

probabilistic reasoning and machine learning to software engineering offers a strong 

framework for search-based software engineering, despite the fact that it is a relatively new 

field. According to the author's research of the relationships between the two disciplines, there 

are a number of shared aspects between the two. 

Software quality models were compared by Tate (18). To examine the present methodologies, 

case studies employ software quality models. The outcomes of the case study increase the 

evaluation of the empirical model. Predetermined selection criteria are utilised for both the 

suggestion and selection of models. Success criteria are developed in advance and used to 

assess approaches. Process models are appraised utilizing theoretical assessment approaches. 

We assess the model's relevance to software participants and how well it meets the standards 

of an ideal process quality model. To test the depth and breadth of a model's performance in 

actual software operations, empirical evaluation methodologies are utilised. There are 

approaches to figure out which process quality model to apply and whether they all produce 

different outcomes. We check for differences in the software techniques employed in the case 

studies. 

Research by Fadhil et al. [11] looks at how AI may enhance strategies for anticipating and 

identifying software faults. Statistics demonstrate that AI has helped uncover software 

vulnerabilities and forecast when faults may occur. The application of AI in software 

engineering increases software quality by minimising excessive expenditure and generating 

optimum solutions. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  100 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Concerning these measures, Kothawar and Vajrapu [19] detailed the difficulties and solutions. 

Method: Fifteen case studies showcasing successful tactics were picked from eight different 

firms, all of which had distinct obstacles and found inventive ways to solve them. The findings 

of our study reveal that startups prioritise activities in various ways. Formal procedures were 

adopted by six of the eight organisations, but unstructured prioritisation was relied upon by 

the other two. Making priorities according to consumer feedback and return on investment 

(ROI) is the key to finding out how much firms are worth. 

The key demands and obstacles experienced by startups are discussed in this research. The 

results of the research are supported by the literature. Finding answers helps specialists in 

their area. Software businesses located in Sweden should be included in the ballot. 

Practitioners wishing to build a software business and focus needs may also profit from some 

of these approaches. 

This work's aggregation approach is clear, useful, and easy to grasp [9]. This approach assures 

that software quality assessments are trustworthy and can be repeated with the use of metrics 

and models. All apparent software artefacts are utilised to give probability to good and low 

quality. There were theoretical and empirical components to the validation approach. 

Evaluations of information quality, maintainability, and bug prediction were carried out. 

Through the use of software visualisation, we examined the performance of numerous 

aggregation techniques and the utility of aggregation for multivariate data. The author 

finished by examining the utility of MCR and applying it to real alternatives. A benchmark 

that handles regression concerns was produced by the author utilizing machine learning 

approaches. After that, they compared the aggregated result to a ground truth and made sure 

it truly mirrored the input data. Our system enables us to make assessments based on various 

factors, and it is both precise and responsive. Without utilizing any reference data, our 

suggested algorithm may act as an unbiased unsupervised forecaster. 

Sentiment analysis on social media sites like Facebook and Twitter has lately increased in 

popularity as a valuable tool for grasping people's thoughts and sentiments. On the other 

hand, difficulties linked to NLP are confronted by sentiment analysis. Recently, deep learning 

models have demonstrated to be a great way for dealing with challenges in NLP. The most 

current work addressing challenges in sentiment analysis, particularly sentiment polarity, is 

covered in the study [10] via use of deep learning. Using word embedding and the TF-IDF 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  101 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

model, several datasets have been studied. Scientists have also compared the results of studies 

using alternative models and input factors. 

In order to prioritise testing and locate problematic areas of code more readily, software defect 

prediction is an approach applied. Previous research relied on machine learning approaches 

to construct reliable prediction models, with an emphasis on manually encoding programme 

data. When it comes to constructing reliable prediction models, classical attributes fall short 

because they don't take semantic variations across programmes into account [8]. Integrating 

programme semantics with fault prediction features is the core objective of deep learning. 

Using Abstract Syntax Tree (AST) token vectors, the deep belief network (DBN) learns 

semantic features on its own. We demonstrate that our algorithmically acquired semantic 

characteristics considerably enhance fault prediction both within and across projects, using 10 

open-source projects as examples. This surpasses the usefulness of standard features. As a 

consequence, the WPDP's F1 score rises by 14.2%, recall improves by 11.5%, and accuracy 

increases by 14.7%. In F1 for CPDP, our semantic feature-based method provides an 8.9% 

improvement over TCA+. 

The approach LEMNA, which the authors [20] described, precisely and comprehensively 

describes security measures. In order to clarify the categorization of an input sample, LEMNA 

creates a restricted collection of features. Building a simple, intelligible model that can reach 

near to deep learning's decision boundary is the aim. The system leverages nonlinear local 

constraints to boost explanation accuracy and effectively controls feature dependence to allow 

interaction with security applications like binary code analysis. Two deep learning security 

applications—a malware classifier and a function start detector for binary reverse 

engineering—were utilised to examine our technique. Evidence from rigorous testing 

confirms LEMNA's hypothesis as the most accurate explanation. By utilizing it to assess 

model behaviour, solve classification issues, and automatically remedy target model faults, 

the author illustrates how LEMNA may aid machine learning developers. 

Reference [7] looked at software project management-related machine learning literature. 

Scholarly papers addressing areas like methodology, software project management, and 

machine learning may be discovered in venues like Web Science, Science Direct, and IEEE 

Explore. In total, 111 articles are scattered out across three separate collections. Management 

of software projects is the topic of the first series of articles. Machine learning methodologies 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  102 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

and techniques employed in projects make up the second category. The third category 

comprises of research that have explored the different stages and evaluations of machine 

learning management, along with the findings of these investigations. Research on the 

impacts and development of machine learning project forecasting is also a component of it. 

As a consequence, attempts to control project risks in the future will have a better basis. 

Maximising the growth output ratio, minimising the likelihood of failure, enhancing project 

outcomes, and avoiding losses are all potential effects of employing machine learning for 

project risk assessment. 

Recent breakthroughs in machine learning have generated interest in discovering methods to 

incorporate AI into information technology applications and services. Many firms modified 

their methods to development in order to accomplish this aim. The author explains the 

outcomes concerning the Microsoft AI app development teams. Search and natural language 

processing are two areas where the platform is aimed to assist the creation of artificial 

intelligence applications. R and Python, two data science tools, are utilised to achieve this. 

Bug reporting systems and diagnostic tools are two examples of potential usage. Research 

mentioned in [5] suggests that this workflow has been adopted into the software engineering 

processes of multiple Microsoft teams. As a consequence of this integration, more light has 

been thrown on a number of important technical barriers that firms may encounter when 

mass-producing AI goods for sale. Because of these issues, Microsoft's best practices had to be 

employed. Furthermore, the author identified three significant contrasts in AI: (1) software 

development teams sometimes lack the specialist expertise required for model change and 

reuse. The second difficulty is that, in compared to standard software components, AI 

components are more difficult to handle as standalone modules. Vital information was 

communicated via Microsoft Teams. 

"Deep neural networks" (DNNs) were initially suggested by Yang et al. [6] and an upgraded 

model training technique was also offered. Alpha Go exhibited deep learning's remarkable 

skills in 2016. Experts in software engineering (SE) may construct cutting-edge research tools 

with the aid of deep learning. Software engineering (SE) deep neural networks' (DNNs') 

performance is impacted by tuning, internal structure, and model selection. Deep learning's 

potential applications in software engineering have gotten little academic attention. The 

author looked extensively for relevant studies published as far back as 2006. First, the notion 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  103 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

of deep learning is presented in the context of software engineering. A number of SE's deep 

learning techniques have been categorised. While researching possible uses of deep neural 

networks (DNNs) in software engineering, the author looked at strategies for improving deep 

learning models. Our investigation's results shed light on critical difficulties and guide the 

way towards possible future research topics. 

More and more, machine learning is being utilised by software developers to make current 

software smart and able to learn on its own. Researchers in the area of software development 

are increasingly looking at methods to integrate machine learning into different phases of the 

SDLC. Presented here are the findings of an analysis on the application of machine learning 

across the software development life cycle. Overall, the purpose of [3] was to obtain a full 

grasp of how various phases of the software development life cycle interact with different 

kinds of machine learning tools, processes, and approaches. We undertake a thorough 

investigation to address the issue of whether machine learning is biassed towards specific 

phases or methodologies. 

The usage of recommendation systems is becoming increasingly vital for commercial 

transactions, revenue, and general success. This research focuses on recommendation systems 

and their implementation approaches. The contents and qualities of a  recommended system 

may vary based on the needs of the company. This article explains the design concepts and 

basic features of  recommended systems. Several notable approaches are open to examination. 

To recap, [4] provided movie recommendation algorithms from the three primary sectors: 

cinema, music, and e-commerce. The survey seeks to offer readers a full grasp of the scenarios 

in which particular  recommended systems are acceptable. 

Data scientists typically construct machine learning models to handle diverse difficulties in 

both industry and academia; nonetheless, these models have their own hurdles. An challenge 

in machine learning development is the lack of understanding among practitioners about the 

possible benefits of following to the methods outlined in the software engineering 

development lifecycle (SEDL). Indeed, owing to the intrinsic distinctions between machine 

learning systems and normal software systems, there will necessarily be some quirks in the 

development process. In the context of software engineering, the purpose of [2] was to 

evaluate the issues and techniques that arise when constructing models, with an emphasis on 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  104 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

how developers may receive benefits from adopting or adapting the standard workflow for 

machine learning. 

Deep learning has been recently employed in the area of software engineering (SE). There are 

still unsolved questions. Li et al. [1] analysed 98 software engineering articles that employ 

deep learning to solve these issues. Deep learning approaches have simplified 41 software 

engineering jobs across all phases. Deep learning models and their numerous variations are 

employed to handle 84.7% of software engineering challenges in academic articles. The 

practicality of deep learning is being put into doubt. In the future, there may be a bigger 

number of software engineering researchers who are interested in upgrading deep learning-

based solutions. 

 

Approach 

Within this portion, we have provided a new framework of Long Short-Term Memory (LSTM) 

that is capable of delivering suggestions for software development features. These 

suggestions are produced from the dataset of consumers. Figure 1 displays the recommended 

framework procedure of the current investigation: 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  105 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

 

Figure 1  

The proposed framework workflow. 

Description Of Raw Data 

An Excel-based synthetic dataset, hand-picked from a dataset obtained using real Business 

Intelligence tools, is used in this research. The dataset has eleven characteristics and one 

hundred rows; one of those rows reflects the program's rating. If a programming gets a 3 or 

above, it's highly recommended. If it is so, the proposed model is useless. Table 1 provides a 

description and explanation of the attributes of the dataset. 

Figure 3 shows the feature business scale distribution for several deployment methods and 

operating systems, including on-premise, hybrid, and cloud. You can also see the prices for 

the open source, corporate, and freemium editions there. 

. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://www.hindawi.com/journals/cin/2022/1960684/fig1/


An Open Access Journal from The Law Brigade Publishers  106 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  107 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

 

Processing Of Raw Data 

Data purification was accomplished after raw data collection by employing a number of 

methods, one of which was eliminating null values and duplicate entries. This is how data 

mining converts raw, unstructured information into a form that can be easily studied; this is 

helpful because raw, unstructured information from the real world is rare and inconsistent. 

Classification machine learning approaches typically display equal frequencies in each class, 

but prediction models become complicated when categories aren't evenly distributed. 

Following this, resampling methods achieved remarkable progress, enabling us to remove 

entries from every cluster while preventing undersampling and keeping records from the 

majority class [21]. 

When doing data mining research, it is crucial to ensure that the dataset is balanced and 

consistent. Finding dataset outliers is a doable task. Dataset outliers are values that deviate 

significantly from the norm and stand out from the rest due to their extreme uniqueness. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  108 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Outliers might be caused by reading mistakes, device malfunctions, or human error. Prior to 

conducting any statistical analysis or study, it needs to be extracted from the dataset. Outlier 

data poses a risk of inadequate or incorrect conclusions, which could affect the analysis and 

subsequent treatment [22, 23].. 

 

 

Figure 2  

Data visualisation and attribute distribution of frequency. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://www.hindawi.com/journals/cin/2022/1960684/fig2/


An Open Access Journal from The Law Brigade Publishers  109 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Enhancing Features 

These capabilities might be exploited by learning machines given the correct domain data. 

Machine learning representations cannot be created from raw data without human 

intervention. Researchers utilised correlation matrices to determine the interrelationships of 

the variables. Matrixes for correlation and covariance are identical. The correlation could be 

used to determine the degree of a linear relationship, among other potential uses. One way to 

measure the direction and strength of a linear relationship between the two numbers is 

through correlation, which is a statistical tool. There is a wide range of possible values for r, 

from -1 to +1. 

 

 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  110 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

 

Figure 3  

Dispersal of features: (a) enterprise-level, (b) operational system, (c) cost. 

 

Model Proposal 

Figure 4 of the model shows that the fulfilled layer is in charge of extracting input sequence 

features and embedding them. The Keras-Tuner module's hyperband optimisation strategy is 

one approach to optimising TensorFlow model hyperparameters. Maybe just a few lines of 

code will be enough to accomplish this. It is standard practice to use a validation dataset that 

is randomly sampled 10% of the training data when adjusting hyperparameters. Finally, we 

used sparse categorical accuracy to rank the optimisation experiments. After experimenting 

with various parameters, the batch size was finally settled on as 512. Using a combination of 

hyperparameters that optimise its performance to the maximum, the final model is trained 

with data acquired from earlier optimisation processes. To determine how well our newly 

designed suggested system performed in contrast to IRnoD, we employed a back-testing 

strategy. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://www.hindawi.com/journals/cin/2022/1960684/fig3/


An Open Access Journal from The Law Brigade Publishers  111 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

 

Figure 4  

Proposed model architecture. 

 

Figure 5  

Recurrent nodes of modified LSTM. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://www.hindawi.com/journals/cin/2022/1960684/fig4/
https://www.hindawi.com/journals/cin/2022/1960684/fig5/


An Open Access Journal from The Law Brigade Publishers  112 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

 

Figure 6  

Unrolled nodes. 

 

 

Figure 7  

Modified cell of LSTM 

 

New Long Short-Term Memory (LSTM) Cell 

Long short-term memory (LSTM) networks are a subgroup of RNNs. Many aspects of human 

behaviour are temporally or sequentially dependent; for instance, language, market pricing, 

and electricity demand. Such events are what recurrent neural networks aim to model and 

represent. One way to do this is to use the input from a neural network layer at time t+1 and 

feed it the output from the same layer at time t. Figure 5 shows that the updated LSTM 

contains different recurrent units: 

 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://www.hindawi.com/journals/cin/2022/1960684/fig6/
https://www.hindawi.com/journals/cin/2022/1960684/fig7/


An Open Access Journal from The Law Brigade Publishers  113 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Figure 6 demonstrates that the data is regularly delivered to the network and contains the 

previous output, F ($h t−1$). 

The conventional neural network layers are replaced by LSTM cell blocks in long short-term 

memory (LSTM) networks. The input, forget, and output gates—which will be examined 

more later on—are part of these cells. Our proposed LSTM cell is shown visually in Figure 7. 

 

Findings And Analysis 

For this method's testing, we consulted the Steam project's data. Currently, we do not have 

any datasets available that would be suitable for testing our technique. For testing reasons, 

we used the most current information as our test set and the remaining data as our training 

sets. 

Table 4 

The suggested LSTM's recall rates using various methods. 

 

Approach Recall 

rate 

 

IR 0.0824 

IF 0.064 

TD 0.014 

 

 

A serial filling strategy was used to carry out dimensionality reduction in the experiment, 

with a target dimension of k=50 and a time series length of T=12. At the close of business, we 

sent a catalogue including the fifty most sought-after items (N = 50) to every user. We 

conducted two independent control tests to evaluate the overall efficacy of our method. 

Neither dimensionality reduction (DR) nor serial filling (SF) were used in a single experiment.. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  114 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

Table 5 

How long does the suggested LSTM take using various methods?. 

 

Approach Training time (seconds)

 Testing time (seconds) 

 

IR 1500 16 

IF 1250 13 

The collaborative filtering methods for temporal decay (TD) and implicit feedback (IF) were 

used as a baseline against which our solution was benchmarked. The recall rate allowed us to 

measure the efficacy of our suggestions. We measured the system's efficiency by looking at its 

training and execution timings. Finally, we had to see whether the average amount of time it 

took each software and approach to make a proposal varied significantly.. 

 

Figure 8  

The LSTM with IR is suggested. 

 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://www.hindawi.com/journals/cin/2022/1960684/fig8/


An Open Access Journal from The Law Brigade Publishers  115 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

 

Figure 9  

Recommendation of LSTM with IF. 

 

Table 4 displays the recall rates for various techniques. Results revealed that IR and serial 

filling outperformed the baseline treatments in terms of memory. Table 5 displays the total 

amount of time spent in IR. Since matrix factorization yields a recall rate for information 

retrieval (IR) that is comparable, it is an excellent technique for minimising a system's 

dimensionality. 

The IR data is shown in Figure 8, and the distribution of the most recommended software's 

interface (IF) at various eras is displayed in Figure 9. From the fact that our information 

retrieval (IR) technique recommends a greater diversity of items than baseline collaborative 

filtering, it follows that our strategy is more varied. 

 

Conclusion 

A long short-term memory (LSTM) recommendation model for interaction records was 

suggested in this research. Based on our evaluations, our model performed very well in all 

three areas: precision, efficiency, and diversity. Our next step is to experiment with other 

datasets to see whether our method works on a wider scale. Additionally, as a measure of 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://www.hindawi.com/journals/cin/2022/1960684/fig9/


An Open Access Journal from The Law Brigade Publishers  116 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

quality in this study, we included the total amount of time spent communicating with others. 

With so many different viewpoints represented and so many different items being appraised, 

the possibility of bias in ratings is high. The takeaway here is that going forward, we need to 

pay close attention to making our rating vectors better. We will investigate a wide variety of 

other approaches and models to deal with time series. 

 

References 

1. X. Li, H. Jiang, Z. Ren, G. Li, and J. Zhang, “Deep learning in software engineering,” 

2018, https://arxiv.org/ftp/arxiv/papers/1805/1805.04825.pdf. 

2. G. Lorenzoni, P. Alencar, N. Nascimento, and D. Cowan, “Machine learning model 

development from a software engineering perspective: a systematic literature review,” 

2021, https://arxiv.org/abs/2102.07574. 

3. Pargaonkar, Shravan. "Bridging the Gap: Methodological Insights from Cognitive 

Science for Enhanced Requirement Gathering." Journal of Science & Technology 1.1 

(2020): 61-66. 

4. Pargaonkar, Shravan. "A Review of Software Quality Models: A Comprehensive 

Analysis." Journal of Science & Technology 1.1 (2020): 40-53. 

5. S. Shafiq, A. Mashkoor, C. Mayr-Dorn, and A. Egyed, “A literature review of using 

machine learning in software development life cycle stages,” IEEE Access, vol. 9, pp. 

140896–140920, 2021. 

6. N. Koneru, S. Rai, S. S. kumar, and S. Koppu, “Deep learning-based automated 

recommendation systems: a systematic review and trends,” Turkish Journal of 

Computer Mathematics Education, vol. 12, no. 6, pp. 3326–3345, 2021. 

7. S. Amershi, A. Begel, C. Bird et al., “Software engineering for machine learning: a case 

study,” in Proceedings of the 2019 IEEE/ACM 41st International Conference on 

Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300, 

Montreal, QC, Canada, May 2019. 

8. Pargaonkar, S. (2020). A Review of Software Quality Models: A Comprehensive 

Analysis. Journal of Science & Technology, 1(1), 40-53. 

9. Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning for software 

engineering,” ACM Computing Surveys, vol. 54, no. 10, 2022 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF
https://arxiv.org/ftp/arxiv/papers/1805/1805.04825.pdf
https://arxiv.org/abs/2102.07574


An Open Access Journal from The Law Brigade Publishers  117 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

10. Pargaonkar, Shravan. "Bridging the Gap: Methodological Insights from Cognitive 

Science for Enhanced Requirement Gathering." Journal of Science & Technology 1.1 

(2020): 61-66. 

11. M. Z. M. Hazil, M. N. Mahdi, M. S. Mohd Azmi, L. K. Cheng, A. Yusof, and A. R. 

Ahmad, “Software project management using machine learning technique - a review,” 

in Proceedings of the 2020 8th International Conference on Information Technology 

and Multimedia (ICIMU), pp. 363–370, Selangor, Malaysia, August 2020. 

12. S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect 

prediction,” Proceedings of the 38th International Conference on Software 

Engineering, vol. 14-22, pp. 297–308, 2016. 

13. Pargaonkar, Shravan. "Future Directions and Concluding Remarks Navigating the 

Horizon of Software Quality Engineering." Journal of Science & Technology 1.1 (2020): 

67-81. 

14. M. Ulan, Aggregation as Unsupervised Learning in Software Engineering and 

Beyond, Linnaeus University Press, Cambridge, MA, USA, 2021. 

15. N. C. Dang, M. N. Moreno-García, and F. De la Prieta, “Sentiment analysis based on 

deep learning: a comparative study,” Electronics, vol. 9, pp. 483–3, 2020. 

16. J. A. Fadhil, K. T. Wei, and K. S. Na, “Artificial intelligence for software engineering: 

an initial review on software bug detection and prediction,” Journal of Computer 

Science, vol. 16, no. 12, pp. 1709–1717, 2020. 

17. Pargaonkar, S. (2020). Future Directions and Concluding Remarks Navigating the 

Horizon of Software Quality Engineering. Journal of Science & Technology, 1(1), 67-

81. 

18. J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of machine 

learning based software development effort estimation models,” Information and 

Software Technology, vol. 54, no. 1, pp. 41–59, 2012. 

19. Raparthi, M., Dodda, S. B., & Maruthi, S. (2020). Examining the use of Artificial 

Intelligence to Enhance Security Measures in Computer Hardware, including the 

Detection of Hardware-based Vulnerabilities and Attacks. European Economic Letters 

(EEL), 10(1). 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  118 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

20. Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine learning change 

software development practices?” IEEE Transactions on Software Engineering, vol. 47, 

no. 9, pp. 1–1871, 2020. 

21. Raparthi, Mohan, Sarath Babu Dodda, and SriHari Maruthi. "Examining the use of 

Artificial Intelligence to Enhance Security Measures in Computer Hardware, including 

the Detection of Hardware-based Vulnerabilities and Attacks." European Economic 

Letters (EEL) 10.1 (2020). 

22. F. Del Carpio and L. B. Angarita, “Trends in software engineering processes using 

deep learning: a systematic literature review,” in Proceedings of the 2020 46th 

Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 

pp. 445–454, Kranj, Slovenia, August 2020. 

23. F. Meziane and S. Vadera, Artificial Intelligence in Software Engineering, Carnegie 

Mellon University, Pittsburgh, PA, USA, 2010. 

24. M. Barenkamp, J. Rebstadt, and O. Thomas, “Applications of AI in classical software 

engineering,” AI Perspect, vol. 2, no. 1, pp. 1–15, 2020. 

25. M. Harman, “The role of artificial intelligence in software engineering,” 

in Proceedings of the 2012 First International Workshop on Realizing AI Synergies in 

Software Engineering (RAISE), pp. 1–6, Zurich, Switzerland, June 2012. 

26. J. Tate, Software Process Quality Models: A Comparative Evaluation, Citeseerx, 

Pennslyvennia, PA, USA, 2003. 

27. S. Kothawar and R. G. Vajrapu, “Software requirements prioritization practices in 

software start-ups: a qualitative research based on start-ups in India,” vol. 57, 2018. 

28. W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemma,” in Proceedings of the 

2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 364–

379, Toronto, Canada, October 2018. 

29. M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “CorrAUC: a malicious bot-

IoT traffic detection method in IoT network using machine learning techniques,” IEEE 

Internet of Things Journal, vol. 8, no. 5, pp. 3242–3254, 2021. 

30. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “IoT malicious traffic 

identification using wrapper-based feature selection mechanisms,” Computers & 

Security, vol. 94, Article ID 101863, 2020. 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF


An Open Access Journal from The Law Brigade Publishers  119 

 

 

Journal of Science & Technology (JST) 

ISSN 2582 6921 

Volume 2 Issue 1  [March 2021] 

© 2021 All Rights Reserved by The Science Brigade Publishers 

31. Shafiq, Z. Tian, A. K. Bashir, A. Jolfaei, and X. Yu, “Data mining and machine learning 

methods for sustainable smart cities traffic classification: a survey,” Sustainable Cities 

and Society, vol. 60 

 

 

 

https://thelawbrigade.com/
https://thelawbrigade.com/
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/jst/?utm_source=ArticleFooter&utm_medium=PDF
https://thesciencebrigade.com/?utm_source=ArticleFooter&utm_medium=PDF

