Revolutionizing AI-driven Hypertension Care: A Review of Current Trends and Future Directions

Revolutionizing AI-driven Hypertension Care: A Review of Current Trends and Future Directions

Authors

  • Hamza Ahmed Qureshi Mercer University, USA
  • Zeib Jahangir William Jessup University, California, USA
  • Sara Muddassir Qureshi Deggendorf Institute of Technology, Germany
  • Yahya Abdul Rehman National University of Sciences and Technology, Pakistan
  • Saad Ur Rehman Shah University of Illinois - Urbana Champaign USA
  • Ahsan Ahmad DePaul University, USA

DOI:

https://doi.org/10.55662/JST.2024.5405

Downloads

Keywords:

Artificial intelligence, Machine learning, Hypertension management, Predictive modeling, Ethical

Abstract

Almost all countries have patients with hypertension as a standard but far-reaching medical concern, and this brings notable financial consequences. The combination of Artificial Intelligence and Machine Learning in controlling hypertension holds the potential for timely recognition, individualized management approaches, and adherence to medication monitoring. Nevertheless, healthcare faces hurdles in adopting such technologies due to data quality, system integration, ethical considerations, and regulatory barriers. This literature review mainly deals with the current state of AI and ML use in the management of hypertension. Particular attention is paid to their prediction, monitoring, and individualization of the therapeutic approaches. Key areas of interest include early detection, risk prediction, and developing individualized care plans. To promote the responsible and ethical use of AI in healthcare, future research in this field might include but not be limited to continuous monitoring, chronic disease management, and the integration of multi-modal data. Patient privacy, data security, algorithmic bias, and informed consent are the ethical issues to consider. Furthermore, the review discusses the ethical dilemmas surrounding patient privacy, data security, and programming biases in AI-driven healthcare solutions. To ensure that these technologies are effectively implemented in clinical practice, we need to address issues relating to data quality, system integration, ethics, and regulation. This may have potential results such as transforming hypertension management through sustained innovation efforts, thus improving quality care among hypertensive patients. Finally, the review highlights the future potential of AI to transform clinical practice, individualize treatment approaches, and mitigate the global impact of hypertension on public health.

Downloads

Download data is not yet available.

References

News-Medical. Uncontrolled hypertension wreaks havoc on global health and economies. News-Medical. https://www.news-medical.net/news/20230920/Uncontrolled-hypertension-wreaks-havoc-on-global-health-and-economies.aspx. Published September 21, 2023.

High blood pressure facts. High Blood Pressure. https://www.cdc.gov/high-blood-pressure/data-research/facts-stats/index.html. Published May 15, 2024.

Kirkland, E. B., Heincelman, M., Bishu, K. G., Schumann, S. O., Schreiner, A., Axon, R. N., Mauldin, P. D., & Moran, W. P. (2018). Trends in Healthcare Expenditures Among US Adults with Hypertension: National Estimates, 2003–2014. Journal of the American Heart Association. Cardiovascular and Cerebrovascular Disease, 7(11). https://doi.org/10.1161/jaha.118.008731 DOI: https://doi.org/10.1161/JAHA.118.008731

2023 ESH Hypertension Guideline Update: Bringing us Closer Together across the pond - American College of Cardiology. (2024, February 5). American College of Cardiology. https://www.acc.org/Latest-in-Cardiology/Articles/2024/02/05/11/43/2023-ESH-Hypertension-Guideline-Update

Visco, V., Izzo, C., Mancusi, C., Rispoli, A., Tedeschi, M., Virtuoso, N., Giano, A., Gioia, R., Melfi, A., Serio, B., Rusciano, M. R., Di Pietro, P., Bramanti, A., Galasso, G., D'Angelo, G., Carrizzo, A., Vecchione, C., & Ciccarelli, M. (2023). Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve. Journal of cardiovascular development and disease, 10(2), 74. https://doi.org/10.3390/jcdd10020074

Krittanawong, C., Virk, H. U. H., Bangalore, S., Wang, Z., Johnson, K. W., Pinotti, R., Zhang, H., Kaplin, S., Narasimhan, B., Kitai, T., Baber, U., Halperin, J. L., & Tang, W. H. W. (2020). Machine learning prediction in cardiovascular diseases: a meta-analysis. Scientific reports, 10(1), 16057. https://doi.org/10.1038/s41598-020-72685-1 DOI: https://doi.org/10.1038/s41598-020-72685-1

Ye, C., Fu, T., Hao, S., Zhang, Y., Wang, O., Jin, B., Xia, M., Liu, M., Zhou, X., Wu, Q., Guo, Y., Zhu, C., Li, Y. M., Culver, D. S., Alfreds, S. T., Stearns, F., Sylvester, K. G., Widen, E., McElhinney, D., & Ling, X. (2018). Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning. Journal of medical Internet research, 20(1), e22. https://doi.org/10.2196/jmir.9268 DOI: https://doi.org/10.2196/jmir.9268

McManus, R. J., Mant, J., Franssen, M., Nickless, A., Schwartz, C., Hodgkinson, J., Bradburn, P., Farmer, A., Grant, S., Greenfield, S. M., Heneghan, C., Jowett, S., Martin, U., Milner, S., Monahan, M., Mort, S., Ogburn, E., Perera-Salazar, R., Shah, S. A., Yu, L. M., … TASMINH4 investigators (2018). Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. Lancet (London, England), 391(10124), 949–959. https://doi.org/10.1016/S0140-6736(18)30309-X DOI: https://doi.org/10.1016/S0140-6736(18)30309-X

Visco, V., Izzo, C., Mancusi, C., Rispoli, A., Tedeschi, M., Virtuoso, N., Giano, A., Gioia, R., Melfi, A., Serio, B., Rusciano, M. R., Di Pietro, P., Bramanti, A., Galasso, G., D’Angelo, G., Carrizzo, A., Vecchione, C., & Ciccarelli, M. (2023). Artificial intelligence in hypertension Management: An ace up your sleeve. Journal of Cardiovascular Development and Disease, 10(2), 74. https://doi.org/10.3390/jcdd10020074

Challa, Babu, S., & Aparna, G. (2020). Blood Pressure Prediction using Machine Learning algorithms. https://www.semanticscholar.org/paper/Blood-Pressure-Prediction-using-Machine-Learning-Challa-Babu/91740790d574c8f0ef64ac03117b247c8fcf0015

Zapata, R., Rechdan, M., Brinkley, L., Louis-Jacques, A., Modave, F., & Lemas, D. J. (2024). 1192 The Evolving Landscape of Biomedical Informatics for Postpartum Hypertension: A scoping review. American Journal of Obstetrics and Gynecology, 230(1), S623–S624. https://doi.org/10.1016/j.ajog.2023.11.1216 DOI: https://doi.org/10.1016/j.ajog.2023.11.1216

Amaratunga, D., Cabrera, J., Sargsyan, D., Kostis, J. B., Zinonos, S., & Kostis, W. J. (2020). Uses and opportunities for machine learning in hypertension research. International Journal of Cardiology. Hypertension, 5, 100027. https://doi.org/10.1016/j.ijchy.2020.100027 DOI: https://doi.org/10.1016/j.ijchy.2020.100027

Gudigar, A., Kadri, N. A., Raghavendra, U., Samanth, J., Maithri, M., Inamdar, M. A., Prabhu, M. A., Hegde, A., Salvi, M., Yeong, C. H., Barua, P. D., Molinari, F., & Acharya, U. R. (2024). Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013–2023). Computers in Biology and Medicine, 108207. https://doi.org/10.1016/j.compbiomed.2024.108207 DOI: https://doi.org/10.1016/j.compbiomed.2024.108207

Sakka, Y., Qarashai, D., & Altarawneh, A. (2023). Predicting Hypertension using Machine Learning: A Case Study at Petra University. International Journal of Advanced Computer Science and Applications/International Journal of Advanced Computer Science & Applications, 14(3). https://doi.org/10.14569/ijacsa.2023.0140368 DOI: https://doi.org/10.14569/IJACSA.2023.0140368

Chaikijurajai, T., Laffin, L. J., & Tang, W. H. W. (2020). Artificial intelligence and hypertension: recent advances and future outlook. American Journal of Hypertension, 33(11), 967–974. https://doi.org/10.1093/ajh/hpaa102 DOI: https://doi.org/10.1093/ajh/hpaa102

Santhanam, P., & Ahima, R. S. (2019). Machine learning and blood pressure. ˜the œJournal of Clinical Hypertension, 21(11), 1735–1737. https://doi.org/10.1111/jch.13700 DOI: https://doi.org/10.1111/jch.13700

Kaur, S., Bansal, K., & Kumar, Y. (2022). Artificial Intelligence approaches for Predicting Hypertension Diseases: Open Challenges and Research Issues. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), 338-343. DOI: https://doi.org/10.1109/IC3I56241.2022.10072978

Islam, M. M., Alam, M. J., Maniruzzaman, M., Ahmed, N. A. M. F., Ali, M. S., Rahman, M. J., & Roy, D. C. (2023). Predicting the risk of hypertension using machine learning algorithms: A cross sectional study in Ethiopia. PloS one, 18(8), e0289613. https://doi.org/10.1371/journal.pone.0289613 DOI: https://doi.org/10.1371/journal.pone.0289613

Hu, Y., Huerta, J., Cordella, N., Mishuris, R. G., & Paschalidis, I. C. (2023). Personalized hypertension treatment recommendations by a data-driven model. BMC medical informatics and decision making, 23(1), 44. https://doi.org/10.1186/s12911-023-02137-z DOI: https://doi.org/10.1186/s12911-023-02137-z

Covvey, H. D. (2018). Healthcare as a complex adaptive system. In EHealth research, theory and development (pp. 69-90). Routledge. DOI: https://doi.org/10.4324/9781315385907-4

Murdoch, Blake. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics. 22. 10.1186/s12910-021-00687-3. DOI: https://doi.org/10.1186/s12910-021-00687-3

Ethical concerns around privacy and data security in AI health monitoring for Parkinson’s disease: insights from patients, family members, and healthcare professionals. (n.d.). springerprofessional.de. https://www.springerprofessional.de/en/ethical-concerns-around-privacy-and-data-security-in-ai-health-m/26656398

Rigby, M.J.. (2019). Ethical Dimensions of Using Artificial Intelligence in Health Care. AMA Journal of Ethics. 21. 121-124. 10.1001/amajethics.2019.121. DOI: https://doi.org/10.1001/amajethics.2019.121

Li J. (2023). Security Implications of AI Chatbots in Health Care. Journal of medical Internet research, 25, e47551. https://doi.org/10.2196/47551 DOI: https://doi.org/10.2196/47551

Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., Aggarwal, K., Ibrahim, S., Patil, V., Smriti, K., Shetty, S., Rai, B. P., Chlosta, P., & Somani, B. K. (2022). Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility?. Frontiers in surgery, 9, 862322. https://doi.org/10.3389/fsurg.2022.862322 DOI: https://doi.org/10.3389/fsurg.2022.862322

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature medicine, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0 DOI: https://doi.org/10.1038/s41591-018-0307-0

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. The New England journal of medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181 DOI: https://doi.org/10.1056/NEJMp1606181

Abdullah, S., & Kristoffersson, A. (2023). Machine learning approaches for cardiovascular hypertension stage estimation using photoplethysmography and clinical features. Frontiers in cardiovascular medicine, 10, 1285066. https://doi.org/10.3389/fcvm.2023.1285066 DOI: https://doi.org/10.3389/fcvm.2023.1285066

Kelly, Christopher & Karthikesalingam, Alan & Suleyman, Mustafa & Corrado, Greg & King, Dominic. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine. 17. 10.1186/s12916-019-1426-2. DOI: https://doi.org/10.1186/s12916-019-1426-2

Stanton, M. (2023, November 6). New artificial intelligence program could help treat hypertension. Boston University. https://www.bu.edu/articles/2023/new-artificial-intelligence-program-could-help-treat-hypertension/

Rajput, M. (2023, March 7). AI in Healthcare: Emerging Trends to Follow In 2023. RTInsights. https://www.rtinsights.com/ai-in-healthcare-emerging-trends-to-follow-in-2023/

Visco, Valeria & Izzo, Carmine & Mancusi, Costantino & Rispoli, Antonella & Tedeschi, Michele & Virtuoso, Nicola & Giano, Angelo & Gioia, Renato & Melfi, Americo & Serio, Bianca & Rusciano, Maria & Bramanti, Alessia & Galasso, Gennaro & D'angelo, Gianni & Carrizzo, Albino & Vecchione, Carmine & Ciccarelli, Michele & Pietro, Paola. (2023). Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve. Journal of Cardiovascular Development and Disease. 10. 10.3390/jcdd10020074. DOI: https://doi.org/10.3390/jcdd10020074

Kohjitani, H., Koshimizu, H., Nakamura, K., & Okuno, Y. (2024). Recent developments in machine learning modeling methods for hypertension treatment. Hypertension research : official journal of the Japanese Society of Hypertension, 47(3), 700–707. https://doi.org/10.1038/s41440-023-01547-w DOI: https://doi.org/10.1038/s41440-023-01547-w

Shiwlani, A., Khan, M., Sherani, A. M. K., Qayyum, M. U., & Hussain, H. K. (2024, February 28). REVOLUTIONIZING HEALTHCARE: THE IMPACT OF ARTIFICIAL INTELLIGENCE ON PATIENT CARE, DIAGNOSIS, AND TREATMENT. https://jurnalmahasiswa.com/index.php/Jurihum/article/view/845

Shiwlani, Ashish & Ahmad, Ahsan & Umar, Muhammad & Dharejo, Nasrullah & Tahir, Anoosha & Shiwlani, Sheena. (2024). Analysis of Multi-modal Data Through Deep Learning Techniques to Diagnose CVDs: A Review. International Journal of Membrane Science and Technology. 11. 402-420.

Downloads

Published

09-08-2024
Citation Metrics
DOI: 10.55662/JST.2024.5405
Published: 09-08-2024

How to Cite

Ahmed Qureshi, H., Z. Jahangir, S. Muddassir Qureshi, Y. Abdul Rehman, S. Ur Rehman Shah, and A. Ahmad. “Revolutionizing AI-Driven Hypertension Care: A Review of Current Trends and Future Directions”. Journal of Science & Technology, vol. 5, no. 4, Aug. 2024, pp. 99-132, doi:10.55662/JST.2024.5405.
PlumX Metrics

Plaudit

License Terms

Ownership and Licensing:

Authors of this research paper submitted to the Journal of Science & Technology retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agreed to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.

License Permissions:

Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the Journal of Science & Technology. This license allows for the broad dissemination and utilization of research papers.

Additional Distribution Arrangements:

Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in the Journal of Science & Technology.

Online Posting:

Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the Journal of Science & Technology. Online sharing enhances the visibility and accessibility of the research papers.

Responsibility and Liability:

Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. The Journal of Science & Technology and The Science Brigade Publishers disclaim any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.

Loading...