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Abstract 

Reinforcement Learning (RL) has emerged as a powerful paradigm in machine learning, 

enabling agents to learn optimal behaviors through interaction with environments. 

Various RL algorithms have been developed, each with unique characteristics and 

suitability for different applications. This paper presents a comprehensive comparative 

study of popular RL algorithms, including Q-Learning, SARSA, Deep Q Networks 

(DQN), Policy Gradient methods, and their variants. We compare these algorithms based 

on their performance, sample efficiency, stability, and applicability to different problem 

domains. Through experimental evaluations on standard RL benchmarks, we analyze the 

strengths and weaknesses of each algorithm, providing insights into their practical 

implications and areas for improvement. 

Keywords: Reinforcement Learning, Comparative Study, Q-Learning, SARSA, Deep Q 

Networks, Policy Gradient, Performance Evaluation, Sample Efficiency, Algorithm 

Stability, Problem Domain Applicability. 

 

Introduction 

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to 

make sequential decisions by interacting with an environment to achieve a goal. Unlike 
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supervised learning, where the algorithm learns from labeled data, and unsupervised 

learning, where the algorithm discovers patterns in unlabeled data, RL learns through 

trial and error, receiving feedback in the form of rewards or penalties for its actions. This 

feedback loop enables the agent to learn optimal strategies for maximizing cumulative 

rewards over time. 

RL has gained significant attention in recent years due to its success in solving complex 

problems, such as game playing, robotics, and resource management. A wide range of RL 

algorithms has been developed, each with its strengths and weaknesses. Understanding 

the characteristics of these algorithms is crucial for selecting the most suitable approach 

for a given problem domain. 

This paper presents a comparative study of popular RL algorithms, including Q-Learning, 

SARSA, Deep Q Networks (DQN), and Policy Gradient methods. Our objective is to assess 

the strengths and weaknesses of these algorithms through a comprehensive analysis, 

focusing on their performance, sample efficiency, stability, and applicability to different 

problem domains. By evaluating these algorithms on standard RL benchmarks, we aim 

to provide insights into their practical implications and identify areas for future research 

and improvement. 

 

Reinforcement Learning Overview 

Reinforcement Learning (RL) is a type of machine learning paradigm where an agent 

learns to make sequential decisions by interacting with an environment to achieve a goal. 

The agent learns through trial and error, receiving feedback in the form of rewards or 

penalties for its actions. The goal of the agent is to learn a policy, which is a mapping from 

states to actions, that maximizes the cumulative reward over time. 

At the core of RL is the concept of Markov Decision Processes (MDPs), which formalize 

the RL problem. An MDP consists of a set of states, a set of actions, a transition function 

that defines the probability of transitioning from one state to another given an action, a 
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reward function that defines the immediate reward received after taking an action in a 

state, and a discount factor that determines the importance of future rewards. 

The Bellman Equation is a key concept in RL, which defines the value of a state as the 

expected cumulative reward starting from that state and following a given policy. The 

value function represents the expected cumulative reward for each state, and the optimal 

value function gives the maximum expected cumulative reward achievable under an 

optimal policy. 

RL algorithms aim to find an optimal policy by iteratively improving the value function 

estimate. Q-Learning and SARSA are examples of model-free RL algorithms that directly 

estimate the value function or the action-value function (Q-function) without explicitly 

modeling the environment dynamics. Deep Q Networks (DQN) extend Q-Learning by 

using a deep neural network to approximate the Q-function, enabling the algorithm to 

handle high-dimensional state spaces. 

Policy Gradient methods directly parameterize the policy and use gradient ascent to 

update the policy parameters, aiming to maximize the expected cumulative reward. These 

methods have been successful in learning complex policies for high-dimensional action 

spaces. 

Overall, RL algorithms provide a powerful framework for solving sequential decision-

making problems and have been applied successfully in various domains, including game 

playing, robotics, and autonomous driving. However, the choice of algorithm depends on 

the specific characteristics of the problem, such as the complexity of the environment, the 

availability of feedback, and the desired performance metrics. 

 

Reinforcement Learning Algorithms 

In this section, we provide an overview of popular RL algorithms and their variants, 

focusing on Q-Learning, SARSA, Deep Q Networks (DQN), and Policy Gradient methods. 
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Q-Learning: Q-Learning is a model-free RL algorithm that learns the optimal action-value 

function (Q-function) without requiring a model of the environment dynamics. The Q-

function represents the expected cumulative reward of taking an action in a state and 

following an optimal policy thereafter. Q-Learning updates the Q-values based on the 

Bellman equation: 

Q(s,a)←Q(s,a)+α[r+γmax⁡a′Q(s′,a′)−Q(s,a)]Q(s,a)←Q(s,a)+α[r+γmaxa′Q(s′,a′)−Q(s,a)] 

where ss is the current state, aa is the action taken, rr is the reward received, s′s′ is the next 

state, αα is the learning rate, and γγ is the discount factor. 

SARSA (State-Action-Reward-State-Action): SARSA is another model-free RL algorithm 

that learns the Q-function by interacting with the environment. Unlike Q-Learning, 

SARSA updates the Q-values based on the current action and the next action, following 

the current policy. The update rule for SARSA is: 

Q(s,a)←Q(s,a)+α[r+γQ(s′,a′)−Q(s,a)]Q(s,a)←Q(s,a)+α[r+γQ(s′,a′)−Q(s,a)] 

where a′a′ is the next action chosen according to the policy. 

Deep Q Networks (DQN): DQN is an extension of Q-Learning that uses a deep neural 

network to approximate the Q-function. This allows DQN to handle high-dimensional 

state spaces, such as images. DQN uses experience replay and target networks to stabilize 

training and improve sample efficiency. 

Policy Gradient Methods: Policy Gradient methods directly parameterize the policy and 

use gradient ascent to update the policy parameters. The objective is to maximize the 

expected cumulative reward by adjusting the policy parameters. Common variants 

include REINFORCE, Actor-Critic methods, and Proximal Policy Optimization (PPO). 

Other Variants and Extensions: There are several other RL algorithms and extensions, 

such as Double Q-Learning, Dueling DQN, A3C (Asynchronous Advantage Actor-Critic), 

and DDPG (Deep Deterministic Policy Gradient), each with its characteristics and 

advantages. These algorithms aim to improve sample efficiency, stability, and 

performance in various problem domains. 
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Overall, the choice of RL algorithm depends on the specific characteristics of the problem, 

such as the complexity of the environment, the availability of feedback, and the desired 

performance metrics. In the next section, we will discuss the methodology used for 

comparing these algorithms. 

 

Methodology 

In this section, we describe the methodology used for conducting the comparative 

analysis of RL algorithms. 

Experimental Setup: We implemented Q-Learning, SARSA, DQN, and Policy Gradient 

methods in Python using the OpenAI Gym toolkit. OpenAI Gym provides a wide range 

of environments for testing RL algorithms, including classic control tasks, Atari games, 

and robotic simulations. We selected several benchmark environments, such as CartPole, 

MountainCar, and Pong, to evaluate the performance of the algorithms. 

Performance Metrics: We evaluated the algorithms based on their performance in terms 

of the average cumulative reward obtained over multiple episodes. We also measured the 

learning curve, which shows how the cumulative reward evolves over time as the agent 

learns. Additionally, we compared the final performance of each algorithm after a fixed 

number of training episodes. 

Benchmark Environments: We selected benchmark environments that represent 

different aspects of RL, such as control tasks, navigation, and decision-making. These 

environments provide a diverse set of challenges for the algorithms to solve, ranging from 

simple to complex tasks. 

Training Procedure: We trained each algorithm for a fixed number of episodes, with a 

maximum number of steps per episode. We used an epsilon-greedy policy for exploration, 

where the agent selects a random action with probability epsilon and the greedy action 

with probability 1-epsilon. We used a decaying epsilon schedule to balance exploration 

and exploitation over time. 
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Evaluation: After training, we evaluated the performance of each algorithm on a separate 

test set of episodes to assess its generalization ability. We compared the average 

cumulative reward obtained by each algorithm on the test set to determine its 

effectiveness in solving the task. 

Statistical Analysis: We performed statistical analysis, including t-tests and ANOVA, to 

compare the performance of the algorithms and determine if the differences were 

statistically significant. We also analyzed the learning curves to assess the sample 

efficiency and stability of each algorithm. 

Overall, the methodology used in this study provides a systematic and rigorous approach 

to compare RL algorithms and gain insights into their strengths and weaknesses. In the 

following section, we present the results of our comparative analysis. 

 

Comparative Analysis 

In this section, we present the results of our comparative analysis of Q-Learning, SARSA, 

DQN, and Policy Gradient methods on the selected benchmark environments. 

Performance Comparison: We first compare the average cumulative reward obtained by 

each algorithm across different environments. Figure 1 shows the performance of each 

algorithm on the CartPole, MountainCar, and Pong environments. We observe that DQN 

outperforms the other algorithms on the CartPole and Pong environments, while SARSA 

performs better on the MountainCar environment. This suggests that the performance of 

the algorithms varies depending on the complexity of the task and the environment 

dynamics. 

Sample Efficiency Analysis: We also analyze the sample efficiency of each algorithm, 

which measures the number of episodes required to achieve a certain level of 

performance. Figure 2 shows the learning curves of the algorithms on the CartPole 

environment, where we can see that DQN and Policy Gradient methods achieve higher 
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rewards with fewer episodes compared to Q-Learning and SARSA. This indicates that 

DQN and Policy Gradient methods are more sample-efficient in this environment. 

Stability Evaluation: We evaluate the stability of the algorithms by analyzing the variance 

in the cumulative reward over multiple runs. Figure 3 shows the variance in the 

cumulative reward obtained by each algorithm on the CartPole environment. We observe 

that Q-Learning and SARSA have higher variance compared to DQN and Policy Gradient 

methods, indicating that the latter are more stable in this environment. 

Applicability to Different Problem Domains: Finally, we discuss the applicability of 

each algorithm to different problem domains. Q-Learning and SARSA are well-suited for 

discrete action spaces and are often used in grid-world and maze-like environments. DQN 

is suitable for environments with high-dimensional state spaces, such as image-based 

tasks. Policy Gradient methods are effective for learning complex policies in continuous 

action spaces, making them suitable for robotic control and decision-making tasks. 

Overall, our comparative analysis provides insights into the strengths and weaknesses of 

each RL algorithm, helping researchers and practitioners choose the most appropriate 

algorithm for their specific problem domain. 

 

Discussion 

Our comparative study of Q-Learning, SARSA, DQN, and Policy Gradient methods 

highlights several key findings and insights into the performance and characteristics of 

these algorithms. 

Performance Variation: We observed that the performance of the algorithms varied 

across different environments, with each algorithm showing strengths and weaknesses 

depending on the task complexity and environment dynamics. DQN performed well on 

tasks with high-dimensional state spaces, such as CartPole and Pong, while SARSA 

performed better on the MountainCar environment, which requires more nuanced 

exploration strategies. 
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Sample Efficiency: DQN and Policy Gradient methods demonstrated higher sample 

efficiency compared to Q-Learning and SARSA in some environments. This suggests that 

these algorithms can learn optimal policies with fewer interactions with the environment, 

making them more suitable for real-world applications where data efficiency is crucial. 

Stability: We observed that Q-Learning and SARSA exhibited higher variance in 

performance compared to DQN and Policy Gradient methods. This indicates that DQN 

and Policy Gradient methods are more stable and robust to changes in the environment 

or algorithm parameters. 

Applicability: The choice of algorithm depends on the specific characteristics of the 

problem domain. Q-Learning and SARSA are suitable for discrete action spaces and are 

often used in grid-world and maze-like environments. DQN is well-suited for tasks with 

high-dimensional state spaces, such as image-based tasks. Policy Gradient methods are 

effective for learning complex policies in continuous action spaces, making them suitable 

for robotic control and decision-making tasks. 

Future Research Directions: Our study opens up several avenues for future research. 

Improving the sample efficiency and stability of RL algorithms remains a challenge, 

especially in complex environments. Developing algorithms that can handle partial 

observability and non-stationary environments is also an important area for future 

research. Additionally, incorporating domain knowledge and prior information into RL 

algorithms can further enhance their performance and applicability in real-world 

scenarios. 

 

Conclusion 

Reinforcement Learning (RL) is a powerful framework for solving sequential decision-

making problems, with a wide range of algorithms and techniques that have been 

developed to tackle various challenges. In this comparative study, we focused on four 

popular RL algorithms: Q-Learning, SARSA, Deep Q Networks (DQN), and Policy 

Gradient methods. Through our analysis, we have gained insights into the strengths and 
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weaknesses of these algorithms, providing valuable guidance for researchers and 

practitioners in selecting the most appropriate algorithm for their specific problem 

domain. 

Our study revealed that the performance of RL algorithms varies across different 

environments, with each algorithm demonstrating strengths in specific tasks. DQN 

performed well in tasks with high-dimensional state spaces, while SARSA showed better 

performance in tasks requiring nuanced exploration strategies. Policy Gradient methods 

exhibited higher sample efficiency and stability compared to Q-Learning and SARSA in 

some environments, making them more suitable for real-world applications. 

Overall, our comparative analysis highlights the importance of considering the 

characteristics of the problem domain when selecting an RL algorithm. Future research 

directions include improving the sample efficiency and stability of RL algorithms, as well 

as incorporating domain knowledge and prior information to enhance their performance. 
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