Scalability Challenges in Combining AI with Blockchain

A Performance-Centric Analysis

Authors

  • Emily Carter Research Scientist, Department of Computer Science, Cambridge, UK

Keywords:

Artificial intelligence, blockchain, scalability, computational overhead, decentralized systems

Abstract

The integration of artificial intelligence (AI) with blockchain technology has garnered significant attention in recent years due to the potential benefits of combining decentralized data management with intelligent processing capabilities. However, this integration presents notable scalability challenges that hinder the performance of decentralized AI systems. This paper analyzes the key challenges associated with scaling AI models within blockchain networks, particularly focusing on computational overhead, transaction throughput, and latency issues. Various strategies for enhancing the performance of decentralized AI systems are discussed, including optimization techniques, hybrid architectures, and the implementation of advanced consensus mechanisms. Ultimately, this research aims to provide insights into the performance-centric considerations necessary for overcoming scalability challenges in the AI-blockchain landscape.

References

Gayam, Swaroop Reddy. "Deep Learning for Autonomous Driving: Techniques for Object Detection, Path Planning, and Safety Assurance in Self-Driving Cars." Journal of AI in Healthcare and Medicine 2.1 (2022): 170-200.

Chitta, Subrahmanyasarma, et al. "Decentralized Finance (DeFi): A Comprehensive Study of Protocols and Applications." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 124-145.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Real-Time Logistics and Transportation Optimization in Retail Supply Chains: Techniques, Models, and Applications." Journal of Machine Learning for Healthcare Decision Support 1.1 (2021): 88-126.

Putha, Sudharshan. "AI-Driven Predictive Analytics for Supply Chain Optimization in the Automotive Industry." Journal of Science & Technology 3.1 (2022): 39-80.

Sahu, Mohit Kumar. "Advanced AI Techniques for Optimizing Inventory Management and Demand Forecasting in Retail Supply Chains." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 190-224.

Kasaraneni, Bhavani Prasad. "AI-Driven Solutions for Enhancing Customer Engagement in Auto Insurance: Techniques, Models, and Best Practices." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 344-376.

Vangoor, Vinay Kumar Reddy, et al. "Energy-Efficient Consensus Mechanisms for Sustainable Blockchain Networks." Journal of Science & Technology 1.1 (2020): 488-510.

Kondapaka, Krishna Kanth. "AI-Driven Inventory Optimization in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 377-409.

Kasaraneni, Ramana Kumar. "AI-Enhanced Supply Chain Collaboration Platforms for Retail: Improving Coordination and Reducing Costs." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 410-450.

Pattyam, Sandeep Pushyamitra. "Artificial Intelligence for Healthcare Diagnostics: Techniques for Disease Prediction, Personalized Treatment, and Patient Monitoring." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 309-343.

Kuna, Siva Sarana. "Utilizing Machine Learning for Dynamic Pricing Models in Insurance." Journal of Machine Learning in Pharmaceutical Research 4.1 (2024): 186-232.

George, Jabin Geevarghese. "Augmenting Enterprise Systems and Financial Processes for transforming Architecture for a Major Genomics Industry Leader." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 242-285.

Katari, Pranadeep, et al. "Cross-Chain Asset Transfer: Implementing Atomic Swaps for Blockchain Interoperability." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 102-123.

Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "SLP (Systematic Layout Planning) for Enhanced Plant Layout Efficiency." International Journal of Science and Research (IJSR) 13.6 (2024): 820-827.

Venkata, Ashok Kumar Pamidi, et al. "Implementing Privacy-Preserving Blockchain Transactions using Zero-Knowledge Proofs." Blockchain Technology and Distributed Systems 3.1 (2023): 21-42.

Namperumal, Gunaseelan, Debasish Paul, and Rajalakshmi Soundarapandiyan. "Deploying LLMs for Insurance Underwriting and Claims Processing: A Comprehensive Guide to Training, Model Validation, and Regulatory Compliance." Australian Journal of Machine Learning Research & Applications 4.1 (2024): 226-263.

Yellepeddi, Sai Manoj, et al. "Blockchain Interoperability: Bridging Different Distributed Ledger Technologies." Blockchain Technology and Distributed Systems 2.1 (2022): 108-129.

Downloads

Published

18-09-2024

How to Cite

[1]
Emily Carter, “Scalability Challenges in Combining AI with Blockchain: A Performance-Centric Analysis”, J. of Art. Int. Research, vol. 4, no. 2, pp. 129–135, Sep. 2024.