Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 No. 1 (2021): Cybersecurity and Network Defense Research (CNDR)

Intrusion Detection Systems: Investigating Techniques for Building and Evaluating Intrusion Detection Systems (IDS) for Detecting and Mitigating Cyber Threats in Network Traffic

Published
25-07-2024

Abstract

Intrusion Detection Systems (IDS) play a crucial role in safeguarding computer networks against cyber threats by monitoring and analyzing network traffic for suspicious activities. This paper provides an overview of techniques for building and evaluating IDS. We discuss various types of IDS, including signature-based, anomaly-based, and hybrid IDS, along with their strengths and limitations. Furthermore, we examine the importance of dataset selection, feature extraction, and machine learning algorithms in designing effective IDS. Evaluation metrics and methodologies for assessing the performance of IDS are also discussed. The paper concludes with future research directions and challenges in the field of intrusion detection.

References

  1. Pargaonkar, Shravan. "A Review of Software Quality Models: A Comprehensive Analysis." Journal of Science & Technology 1.1 (2020): 40-53.
  2. Raparthi, Mohan, Sarath Babu Dodda, and SriHari Maruthi. "Examining the use of Artificial Intelligence to Enhance Security Measures in Computer Hardware, including the Detection of Hardware-based Vulnerabilities and Attacks." European Economic Letters (EEL) 10.1 (2020).
  3. Pargaonkar, Shravan. "Bridging the Gap: Methodological Insights from Cognitive Science for Enhanced Requirement Gathering." Journal of Science & Technology 1.1 (2020): 61-66.
  4. Vyas, Bhuman. "Ensuring Data Quality and Consistency in AI Systems through Kafka-Based Data Governance." Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal 10.1 (2021): 59-62.
  5. Rajendran, Rajashree Manjulalayam. "Scalability and Distributed Computing in NET for Large-Scale AI Workloads." Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal 10.2 (2021): 136-141.
  6. Pargaonkar, Shravan. "Future Directions and Concluding Remarks Navigating the Horizon of Software Quality Engineering." Journal of Science & Technology 1.1 (2020): 67-81.
  7. Raparthi, M., Dodda, S. B., & Maruthi, S. (2020). Examining the use of Artificial Intelligence to Enhance Security Measures in Computer Hardware, including the Detection of Hardware-based Vulnerabilities and Attacks. European Economic Letters (EEL), 10(1).
  8. Pargaonkar, S. (2020). A Review of Software Quality Models: A Comprehensive Analysis. Journal of Science & Technology, 1(1), 40-53.
  9. Vyas, B. (2021). Ensuring Data Quality and Consistency in AI Systems through Kafka-Based Data Governance. Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, 10(1), 59-62.
  10. Pargaonkar, S. (2020). Bridging the Gap: Methodological Insights from Cognitive Science for Enhanced Requirement Gathering. Journal of Science & Technology, 1(1), 61-66.
  11. Rajendran, R. M. (2021). Scalability and Distributed Computing in NET for Large-Scale AI Workloads. Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, 10(2), 136-141.
  12. Pargaonkar, S. (2020). Future Directions and Concluding Remarks Navigating the Horizon of Software Quality Engineering. Journal of Science & Technology, 1(1), 67-81.