Unveiling the Essence of Software Quality Attributes: A Comprehensive Review
Downloads
Keywords:
Software Quality, Quality Attributes, robustnessAbstract
This review article delves into the multifaceted realm of software quality attributes, elucidating their pivotal role in shaping the excellence of software products. Software quality attributes, also known as non-functional requirements, constitute the foundation of a robust and user-centric development process. This comprehensive review explores the significance and impact of key quality attributes, ranging from reliability and performance efficiency to security, maintainability, usability, and scalability. Quality requirements, captured as nonfunctional requirements in the early steps of software development, greatly influence the software system’s architecture [1].
The article scrutinizes how reliability ensures consistent performance, the ways in which performance efficiency optimizes resource utilization, and the critical role of security in safeguarding against cyber threats. It also delves into the importance of maintainability for seamless adaptability, usability for enhancing user experience, and scalability for accommodating growing workloads. Software quality is a critical factor in ensuring the success of software projects. Numerous software quality models have been proposed and developed to assess and improve the quality of software products [2].
By providing insights into the evaluation methods, tools, and best practices associated with each quality attribute, this review equips developers and stakeholders with a holistic understanding of the intricacies involved in crafting high-quality software. The synthesis of theoretical concepts and practical considerations offers a valuable resource for navigating the evolving landscape of software development, emphasizing the need for a balanced approach to achieve software excellence. In the face of global competition, businesses across various industries have increasingly turned to lean methodologies to enhance their production processes and remain competitive [3]. It investigates user personas, mental models, and usability studies to enhance the alignment of system requirements with user expectations and needs [4].
Downloads
References
Losavio, F., Chirinos, L., Lévy, N., & Ramdane-Cherif, A. (2003). Quality characteristics for software architecture. Journal of object Technology, 2(2), 133-150.
Pargaonkar, S. (2020). A Review of Software Quality Models: A Comprehensive Analysis. Journal of Science & Technology, 1(1), 40–53. Retrieved from https://thesciencebrigade.com/jst/article/view/37
Pargaonkar, S. (2020). Achieving Optimal Efficiency: A Meta-Analytical Exploration of Lean Manufacturing Principles. Journal of Science & Technology, 1(1), 54–60. Retrieved from https://thesciencebrigade.com/jst/article/view/38
Pargaonkar, S. (2020). Bridging the Gap: Methodological Insights From Cognitive Science for Enhanced Requirement Gathering. Journal of Science & Technology, 1(1), 61–66. Retrieved from https://thesciencebrigade.com/jst/article/view/39
Bertoa, M. F., & Vallecillo, A. (2010). Quality attributes for software metamodels. Málaga, Spain.
Pargaonkar, S. (2020). Future Directions and Concluding Remarks Navigating the Horizon of Software Quality Engineering. Journal of Science & Technology, 1(1), 67–81. Retrieved from https://thesciencebrigade.com/jst/article/view/40
Pargaonkar, S. (2021). Quality and Metrics in Software Quality Engineering. Journal of Science & Technology, 2(1), 62–69. Retrieved from https://thesciencebrigade.com/jst/article/view/41
Barbacci, M. R., Klein, M., & Weinstock, C. B. (1997). Principles for evaluating the quality attributes of a software architecture. Carnegie Mellon University, Software Engineering Institute.
Pargaonkar, S. (2021). The Crucial Role of Inspection in Software Quality Assurance. Journal of Science & Technology, 2(1), 70–77. Retrieved from https://thesciencebrigade.com/jst/article/view/42
Pargaonkar, S. (2021). Unveiling the Future: Cybernetic Dynamics in Quality Assurance and Testing for Software Development. Journal of Science & Technology, 2(1), 78–84. Retrieved from https://thesciencebrigade.com/jst/article/view/43
Pargaonkar, S. (2021). Unveiling the Challenges, A Comprehensive Review of Common Hurdles in Maintaining Software Quality. Journal of Science & Technology, 2(1), 85–94. Retrieved from https://thesciencebrigade.com/jst/article/view/44
Shravan Pargaonkar (2023); Enhancing Software Quality in Architecture Design: A Survey- Based Approach; International Journal of Scientific and Research Publications (IJSRP) 13(08) (ISSN: 2250-3153), DOI: http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14014
Alvaro, A., Almeida, E. S., & Meira, S. L. (2005). Quality attributes for a component quality model. 10th WCOP/19th ECCOP, Glasgow, Scotland, 31-37.
Shravan Pargaonkar (2023); A Comprehensive Research Analysis of Software Development Life Cycle (SDLC) Agile & Waterfall Model Advantages, Disadvantages, and Application Suitability in Software Quality Engineering; International Journal of Scientific and Research Publications (IJSRP) 13(08) (ISSN: 2250-3153), DOI: http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015
Shravan Pargaonkar (2023); A Study on the Benefits and Limitations of Software Testing Principles and Techniques: Software Quality Engineering; International Journal of Scientific and Research Publications (IJSRP) 13(08) (ISSN: 2250-3153), DOI: http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14018
Shravan Pargaonkar, "Advancements in Security Testing: A Comprehensive Review of Methodologies and Emerging Trends in Software Quality Engineering", International Journal of Science and Research (IJSR), Volume 12 Issue 9, September 2023, pp. 61-66, https://www.ijsr.net/getabstract.php?paperid=SR23829090815
Shravan Pargaonkar, "Defect Management and Root Cause Analysis: Pillars of Excellence in Software Quality Engineering", International Journal of Science and Research (IJSR), Volume 12 Issue 9, September 2023, pp. 53-55, https://www.ijsr.net/getabstract.php?paperid=SR23829092826
Musa, K., & Alkhateeb, J. (2013). Quality model based on cots quality attributes. International Journal of Software Engineering & Applications, 4(1), 1.
Shravan Pargaonkar, "Cultivating Software Excellence: The Intersection of Code Quality and Dynamic Analysis in Contemporary Software Development within the Field of Software Quality Engineering", International Journal of Science and Research (IJSR), Volume 12 Issue 9, September 2023, pp. 10-13, https://www.ijsr.net/getabstract.php?paperid=SR23829092346
Shravan Pargaonkar, "A Comprehensive Review of Performance Testing Methodologies and Best Practices: Software Quality Engineering", International Journal of Science and Research (IJSR), Volume 12 Issue 8, August 2023, pp. 2008-2014, https://www.ijsr.net/getabstract.php?paperid=SR23822111402
Koçak, S. A., Alptekin, G. I., & Bener, A. (2014). Evaluation of Software Product Quality Attributes and Environmental Attributes using ANP Decision Framework. In RE4SuSy@ RE (pp. 37-44).
Shravan Pargaonkar, "Synergizing Requirements Engineering and Quality Assurance: A Comprehensive Exploration in Software Quality Engineering", International Journal of Science and Research (IJSR), Volume 12 Issue 8, August 2023, pp. 2003-2007, https://www.ijsr.net/getabstract.php?paperid=SR23822112511
Pargaonkar, S. S., Patil, V. V., Deshpande, P. A., & Prabhune, M. S. (2015). DESIGN OF VERTICAL GRAVITY DIE CASTING MACHINE. INTERNATIONAL JOURNAL FOR SCIENTFIC RESEARCH & DEVELOPMENT, 3(3), 14-15.
Moreira, A., Araújo, J., & Brito, I. (2002, July). Crosscutting quality attributes for requirements engineering. In Proceedings of the 14th international conference on Software engineering and knowledge engineering (pp. 167-174).
Shravan S. Pargaonkar, Mangesh S. Prabhune, Vinaya V. Patil, Prachi A. Deshpande, Vikrant N.Kolhe (2018); A Polyaryletherketone Biomaterial for use in Medical Implant Applications; Int J Sci Res Publ 5(1) (ISSN: 2250-3153). http://www.ijsrp.org/research-paper-0115.php?rp=P444410
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dr. Vincent Hayes
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
License Terms
Ownership and Licensing:
Authors of this research paper submitted to the journal owned and operated by The Science Brigade Group retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agreed to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
License Permissions:
Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the Journal. This license allows for the broad dissemination and utilization of research papers.
Additional Distribution Arrangements:
Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in this Journal.
Online Posting:
Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the Journal. Online sharing enhances the visibility and accessibility of the research papers.
Responsibility and Liability:
Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. The Science Brigade Publishers disclaim any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.
Plaudit
License Terms
Ownership and Licensing:
Authors of this research paper submitted to the Journal of Science & Technology retain the copyright of their work while granting the journal certain rights. Authors maintain ownership of the copyright and have granted the journal a right of first publication. Simultaneously, authors agreed to license their research papers under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
License Permissions:
Under the CC BY-NC-SA 4.0 License, others are permitted to share and adapt the work, as long as proper attribution is given to the authors and acknowledgement is made of the initial publication in the Journal of Science & Technology. This license allows for the broad dissemination and utilization of research papers.
Additional Distribution Arrangements:
Authors are free to enter into separate contractual arrangements for the non-exclusive distribution of the journal's published version of the work. This may include posting the work to institutional repositories, publishing it in journals or books, or other forms of dissemination. In such cases, authors are requested to acknowledge the initial publication of the work in the Journal of Science & Technology.
Online Posting:
Authors are encouraged to share their work online, including in institutional repositories, disciplinary repositories, or on their personal websites. This permission applies both prior to and during the submission process to the Journal of Science & Technology. Online sharing enhances the visibility and accessibility of the research papers.
Responsibility and Liability:
Authors are responsible for ensuring that their research papers do not infringe upon the copyright, privacy, or other rights of any third party. The Journal of Science & Technology and The Science Brigade Publishers disclaim any liability or responsibility for any copyright infringement or violation of third-party rights in the research papers.